Please wait a minute...
Chinese Journal of Materials Research  2014, Vol. 28 Issue (1): 31-43    DOI: 10.11901/1005.3093.2013.663
Current Issue | Archive | Adv Search |
Extension and Application of Miedema’s Model in O and S Containing Melts and Alloys
Weiliang CHEN,Ning ZHANG,Zhaohui TANG,Xueyong DING()
School of Materials and Metallurgy, Northeastern University, Shenyang 110004
Cite this article: 

Weiliang CHEN,Ning ZHANG,Zhaohui TANG,Xueyong DING. Extension and Application of Miedema’s Model in O and S Containing Melts and Alloys. Chinese Journal of Materials Research, 2014, 28(1): 31-43.

Download:  HTML  PDF(846KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Combined Miedema’s model with experimental data provided by Kleppa, the parameters of oxygen and sulfur which were satisfied with Miedema’s model were derived: Oxgen: electronegativity 7.04, electronic density 6.03, molar volume 4.59; Sulfur: electronegativity 5.8, electronic density 3.24, and molar volume 6.97. In comparison with results from literature, those parameters had been turned out to be highly reasonable to Miedema’s model. The mean absolute percentage error of enthalpies of formation of binary alloying oxides and sulfides were 36.8%, 34.2% respectively. Combining Ding’s model, the activities and interaction coefficients between oxygen and other elements of Fe-based alloying melt in 1873 K were derived and further compared with available experimental data. Calculated results were confirmed to be in good agreement with available experimental data, except some special cases. Therefore the long-term problem related with the parameters of oxygen and sulfur for Miedema’s model has been resolved successfully by this method. In particular, the special cases Nb, Pt, Ag-their electronegativities(4.05, 5.65, 4.35) were revised to be 4.31, 5.57 and 4.17, respectively, and the revised parameters were much more reasonable than the original parameters.

Key words:  foundational discipline in materials science      Miedema’s model      oxygen and sulfur containing melts and alloys      interaction coefficients      revision of parameters     
Received:  12 September 2013     
Fund: *Supported by National Natural Sciences Foundation of China No.51174048.

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2013.663     OR     https://www.cjmr.org/EN/Y2014/V28/I1/31

Fig.1  Comparison between experimental and calculated enthalpies of formation of transition oxides
Comp Δ H e x p Δ H c a l Δ H l i t [ 10 ] Comp Δ H e x p Δ H c a l Δ H l i t [ 10 ]
Sc2O3 -381.764 -345.005 -341.329 CeO2 -362.889 -346.538 -348.575
Y2O3 -355.439 -350.970 -349.580 Ce2O3 -359.238 -351.035 -350.514
La2O3 -358.740 -350.775 -350.702 CeO1.72 -366.048 -351.863 -352.526
TiO -271.332 -320.792 -302.888 CeO1.83 -364.993 -350.472 -351.696
TiO2 -314.916 -305.285 -293.060 Pr2O3 -361.931 -392.932 -382.518
Ti2O3 -300.026 -326.757 -311.466 Pr7O12 -342.632 -387.898 -378.967
Ti3O5 -318.643 -321.200 -306.972 PrO1.833 -333.066 -383.199 -375.059
Ti4O7 -309.502 -317.685 -303.979 PrO2 -316.450 -375.025 -367.933
ZrO2 -365.821 -338.979 -330.139 Nd2O3 -361.581 -350.593 -349.672
HfO2 -381.581 -351.037 -339.316 Sm2O3 -364.728 -351.412 -349.987
VO -215.895 -261.029 -241.936 Eu2O3 -332.544 -351.265 -349.852
V2O3 -243.760 -258.008 -241.508 EuO -295.00 -324.117 -320.167
V2O4 -237.860 -236.011 -222.423 Gd2O3 -365.380 -350.970 -349.580
V2O5 -221.513 -211.273 -200.009 TbO1.72 -350.410 -350.455 -349.799
NbO -209.827 -306.656 -283.019 TbO1.81 -342.314 -348.633 -348.452
NbO2 -264.987 -295.157 -276.932 TbO1.83 -339.958 -348.142 -348.064
Nb2O5 -271.362 -268.916 -253.588 TbO2 -323.842 -342.916 -343.665
Ta2O5 -292.282 -267.213 -252.517 Tb2O3 -373.045 -351.597 -349.714
CrO2 -199.298 -185.376 -170.951 Ho2O3 -376.142 -347.335 -345.757
CrO3 -147.382 -146.466 -135.999 Tm2O3 -377.732 -349.348 -347.184
Cr2O3 -227.940 -204.957 -187.777 Yb2O3 -335.159 -348.651 -346.538
MoO2 -196.313 -214.030 -194.366 Lu2O3 -375.640 -352.388 -349.560
MoO3 -186.272 -174.241 -159.528 CaO -317.544 -283.597 -292.851
WO2 -196.564 -200.640 -179.461 CaO2 -217.568 -299.816 -314.971
WO2.72 -209.987 -173.865 -156.530 SrO -296.018 -275.276 -286.468
WO2.9 -210.273 -167.435 -150.915 SrO2 -211.153 -306.869 -324.179
WO2.96 -210.848 -165.346 -149.085 Dy2O3 -372.620 -350.333 -348.545
WO3 -192.883 -163.970 -147.877 Er2O3 -379.572 -350.715 -348.450
MnO -192.611 -220.677 -206.763 Pt2O3 -17.200 -123.888 -109.852
Mn2O -173.343 -172.952 -160.001 Pm203 -362.00 -354.350 -352.716
Mn2O3 -191.800 -214.350 -202.843 Al2O3 -335.138 -133.255 -135.980
Mn3O4 -198.257 -219.218 -206.851 Li2O -199.577 -144.818 -150.632
MnO2 -173.343 -193.831 -184.631 Li2O2 -158.155 -185.273 -195.531
MnO3.5 -81.009 -136.888 -131.518 NaO2 -86.888 -150.244 -168.986
TcO2 -144.348 -142.045 -125.833 Na2O -139.327 -111.831 -121.998
ReO2 -149.648 -154.220 -134.557 K2O -120.499 -101.843 -113.543
ReO3 -147.277 -125.425 -110.314 K2O2 -123.846 -148.310 -165.773
Re2O7 -140.350 -113.029 -99.633 RbO2 -92.885 -165.548 -188.489
Table 1  Comparison of enthalpies of formation of oxides (kJ/mol-atom)
Comp Δ H e x p Δ H c a l Δ H l i t [ 10 ] Comp Δ H e x p Δ H c a l Δ H l i t [ 10 ]
Fe0.947O -136.759 -181.379 -162.284 Rb2O -113.0 -99.418 -111.251
FeO -136.022 -180.635 -161.407 RbO -102.500 -145.340 -162.871
Fe2O3 -164.850 -175.606 -158.481 Rb2O3 -105 -164.494 -185.603
Fe3O4 -159.769 -179.547 -161.570 CsO2 -95.395 -165.765 -188.838
RuO2 -101.671 -130.929 -114.703 Cs2O -115.325 -96.347 -108.208
OsO2 -98.324 -133.493 -115.745 Cs2O3 -104.014 -161.853 -182.874
OsO4 -78.820 -88.202 -77.356 BeO -304.177 -70.594 -65.942
CoO -118.972 -158.652 -142.658 MgO -300.621 -177.756 -183.611
Co3O4 -130.003 -156.938 -142.119 ZnO -175.230 -124.300 -128.760
Rh2O3 -71.128 -139.034 -124.998 CdO -129.495 -117.887 -125.878
Rh2O -32.00 -104.419 -91.931 HgO -45.395 -101.212 -110.577
RhO -45.00 -138.666 -123.457 B2O3 -254.387 -52.474 -46.710
IrO2 -80.891 -121.620 -106.023 Ga2O3 -217.819 -133.261 -139.356
NiO -119.851 -148.453 -133.407 In2O3 -185.158 -127.937 -140.029
PdO -57.739 -127.772 -118.532 Tl2O -56.345 -74.196 -82.719
CuO -78.032 -146.924 -145.455 Tl2O3 -78.910 -113.520 -128.458
Cu2O -56.902 -117.606 -114.807 SiO2 -291.977 -89.570 -90.912
Ag2O -10.350 -101.987 -104.071 GeO2 -193.301 -86.068 -92.797
Au2O3 -0.669 -99.794 -98.720 SnO -142.885 -110.728 -119.478
ThO2 -408.805 -369.414 -365.369 SnO2 -193.608 -118.285 -129.519
UO2 -361.633 -313.713 -301.150 PbO -109.031 -91.065 -104.280
UO3 -305.746 -264.824 -256.586 PbO2 -91.490 -99.740 -115.816
U3O8 -324.983 -281.594 -272.158 Pb2O3 -98.340 -100.222 -115.600
U4O9 -345.705 -302.423 -291.146 Pb3O4 -102.669 -98.611 -113.466
PuO -282.420 -304.615 -291.869 As2O3 -130.959 -85.496 -90.205
PuO2 -351.944 -299.882 -292.039 As2O5 -132.096 -75.370 -80.510
Pu2O3 -359.824 -316.338 -305.879 Sb2O3 -144.061 -94.780 -106.615
BaO -276.772 -278.500 -289.899 Sb2O4 -151.192 -93.831 -106.266
BaO2 -211.431 -316.987 -334.600 Sb2O5 -138.843 -88.985 -101.335
Sc2O3 -381.764 -345.005 -341.329 Bi2O3 -114.776 -97.903 -113.273
La2O3 -358.740 -350.775 -350.702 P2O5 -214.995 -36.955 -36.338
Continued Table 1  Comparison of enthalpies of formation of oxides (kJ/mol-atom)
Fig.2  Comparison between experimental and calculated enthalpies of formation of transition of oxides
Comp Δ H e x p Δ H c a l Δ H l i t [ 10 ] Comp Δ H e x p Δ H c a l Δ H l i t [ 10 ]
LaS -228.030 -223.613 -225.623 IrS2.667 -45.004 -30.391 -25.352
La2S3 -244.350 -237.854 -231.552 IrS3 -52.512 -28.090 -23.323
TiS -135.981 -185.881 -178.313 Ir2S3 -42.012 -39.747 -34.454
TiS2 -135.701 -163.1533 -146.881 NiS0.840 -44.804 -57.282 -52.221
TiS3 -104.751 -128.902 -113.422 NiS -43.935 -57.597 -51.612
Ti2S3 -123.603 -180.455 -166.413 NiS2 -43.801 -46.436 -39.411
ZrS2 -192.464 -198.988 -183.623 Ni3S2 -43.266 -54.724 -51.012
TaS2 -117.995 -141.454 -125.194 Ni3S4 -43.042 -55.023 -48.023
CrS -73.886 -87.913 -77.945 Ni0.958S -47.603 -57.451 -51.274
CrS1.170 -76.161 -86.688 -75.702 Ni7S6 -44.834 -57.392 -52.213
CrS1.2 -70.012 -86.329 -75.211 PdS -44.055 -64.981 -64.062
CrS1.330 -67.092 -84.432 -72.882 PdS2 -30.273 -56.587 -52.431
Cr2S3 -67.204 -81.410 -69.583 Pd3S -24.131 -39.157 -41.613
MoS2 -92.051 -78.280 -65.012 Pd16S7 -26.802 -47.248 -49.723
MoS3 -77.402 -61.621 -50.093 Pd4S -22.083 -31.319 -33.432
Mo2S3 -81.424 -86.959 -73.912 PtS -41.954 -49.431 -48.161
WS2 -86.473 -65.340 -52.651 PtS2 -36.820 -43.503 -39.802
MnS -107.101 -109.966 -101.182 CuS -26.553 -63.528 -54.554
MnS2 -74.612 -89.471 -77.833 Cu2S -27.062 -54.238 -49.625
ReS2 -59.553 -40.590 -31.264 Ag2S -10.861 -48.996 -44.677
ReS3 -52.092 -31.937 -24.093 ThS -197.703 -225.789 -226.55
Re2S7 -50.161 -28.554 -21.452 ThS2 -208.674 -230.375 -216.587
Fe0.877S -56.192 -66.604 -57.201 Th2S3 -216.803 -239.228 -231.366
Fe0.9S -50.463 -66.812 -57.522 US -158.992 -183.131 -178.075
Fe0.920S -50.684 -66.961 -57.772 US2 -175.732 -170.438 -155.153
Table 2  Comparison of enthalpies of formation of sulfides (kJ/mol-atom)
Comp Δ H e x p Δ H c a l Δ H l i t [ 10 ] Comp Δ H e x p Δ H c a l Δ H l i t [ 10 ]
Fe0.940S -50.842 -67.080 -57.993 U2S3 -170.803 -184.121 -172.082
Fe0.960S -50.641 -67.173 -58.193 PuS -219.664 -186.726 -181.671
Fe0.980S -50.863 -67.239 -58.362 Pu2S3 -197.903 -185.014 -172.994
FeS -50.844 -67.282 -58.513 SrS -234.303 -210.985 -214.153
FeS2 -57.181 -54.830 -45.092 BaS -230.122 -218.100 -223.112
RuS2 -68.622 -37.259 -30.421 CaS -236.601 -211.529 -212.552
OsS2 -49.233 -34.694 -27.462 PrS -225.944 -244.154 -242.091
CoS0.890 -50.034 -61.243 -54.992 Pr3S4 -222.053 -249.773 -240.971
CoS -49.002 -61.307 -54.421 NdS -225.942 -223.330 -224.300
CoS2 -51.042 -49.469 -41.593 Nd2S3 -237.601 -234.611 -227.102
Co3S4 -68.373 -58.593 -50.663 Rh2S3 -26.383 -52.541 -47.043
IrS2 -44.353 -35.719 -30.271 WS2 -86.393 -65.340 -52.654
Ge2S3 -52.002 -32.249 -24.131 NbS2 -118.154 -141.094 -124.652
HgS -26.672 -46.955 -39.224 NbS -105.004 -158.961 -149.731
InS -66.941 -62.771 -54.903 Nb2S3 -118.003 -155.364 -140.662
In2S3 -71.133 -64.215 -54.051 SmS -215.483 -223.494 -224.133
In5S6 -70.372 -64.481 -55.462 YS -230.003 -223.309 -223.872
InS1.33 -72.103 -64.691 -55.093 VS -142.124 -129.545 -119.553
P4S3 -32.031 4.771 8.614 CeS -228.003 -223.641 -225.182
P4S5 -33.885 4.999 8.595 Ce2S3 -237.652 -236.535 -229.673
P4S6 -34.723 5.000 8.5922 CeS1.333 -236.122 -235.838 -231.604
P4S7 -29.395 4.590 7.661 DyS -230.002 -222.817 -222.816
P4S10 -22.094 3.838 6.262 Dy2S3 -244.001 -231.454 -222.893
Sb2S3 -28.352 -38.733 -29.953 ErS -230.003 -222.712 -222.332
SiS2 -71.131 -23.702 -16.014 Er2S3 -247.004 -230.369 -221.421
SnS -53.971 -52.468 -44.832 EuS -209.005 -223.433 -224.042
SnS2 -51.182 -51.117 -40.931 EuS1.333 -212.024 -233.861 -228.534
Sn2S3 -52.723 -54.212 -44.602 GdS -230.003 -223.309 -223.875
Sn3S4 -52.904 -54.445 -45.303 Gd2S3 -241.002 -233.474 -225.512
Tl2S -31.663 -39.799 -35.414 HfS2 -195.001 -201.736 -185.451
ZnS -95.922 -57.093 -48.492 HfS3 -156.003 -163.354 -146.022
Na2S -122.031 -78.327 -76.674 HoS -230.004 -220.921 -220.703
Na2S2 -98.324 -107.633 -101.457 Ho2S3 -245.002 -229.097 -220.384
Na2S3 -86.533 -109.608 -99.568 LuS -230.001 -223.733 -222.932
Na2S4 -68.552 -101.1412 -89.563 Lu2S3 -249.005 -230.149 -220.721
K2S2 -107.752 -109.043 -105.312 AsS -14.054 -24.198 -17.392
K2S3 -93.564 -120.019 -112.573 As2S3 -16.603 -24.234 -16.743
K2S -125.523 -75.100 -73.761 AlS -132.002 -57.115 -48.274
K2S4 -77.622 -118.078 -107.903 Al2S3 -144.801 -54.740 -44.522
Continued Table 2-1  Comparison of enthalpies of formation of sulfides (kJ/mol-atom)
Comp Δ H e x p Δ H c a l Δ H l i t [ 10 ] Comp Δ H e x p Δ H c a l Δ H l i t [ 10 ]
K2S5 -70.86 -110.518 -99.005 B2S3 -50.463 7.553 12.401
K2S6 -58.533 -101.255 -89.402 Bi2S3 -28.624 -44.812 -35.282
BeS -117.152 -4.354 2.301 CdS -74.683 -57.632 -49.593
MgS -172.864 -103.605 -95.803 EuS -209.202 -149.488 -145.002
PbS -49.323 -44.049 -36.234 GaS -104.601 -60.910 -52.562
SiS2 -78.331 -23.702 -16.011 Ga2S3 -103.262 -59.830 -49.661
Rb2S -121.333 -74.446 -73.254 GeS2 -52.304 -29.147 -21.292
Cs2S -114.003 -73.184 -72.101 GeS -38.001 -33.246 -25.873
Li2S -223.004 -98.996 -98.045
Continued Table 2-2  Comparison of enthalpies of formation of sulfides (kJ/mol-atom)
Fig.3  Relation between experimental and calculated ε O j of the fifth main group elements in liquid Fe at 1873 K
Element Lit[10] Cal Exp[11] Element Lit[10] Cal Exp[11]
Ca -28.38 -23.85 Be 12.02 14.13
Sc -20.16 -18.11 B 20.13 21.91 -13.20
Ti -15.82 -15.55 C 32.21 34.90 -19.96
V -10.44 -10.48 N 42.90 46.91 -7.30
Cr -4.56 -4.70 -11.68 Na -20.10 -14.67
Mn -7.63 -6.90 -4.73 Mg -9.61 -5.72
Co 2.92 3.44 1.89 Al 5.49 8.71
Ni 4.66 5.36 1.40 Si 13.04 16.09 -7.09
Cu -3.26 -0.58 -3.56 P 27.94 30.88 9.36
Sr -31.73 -26.84 K -28.47 -22.69
Y -21.50 -18.88 Zn 1.71 5.39
Zr -17.67 -16.54 Ga 3.44 7.21
Nb -12.50 -13.01 Ge 9.67 13.61
Mo -4.55 -5.12 1.26 As 15.13 18.85
Tc 6.58 6.85 Rb -30.84 -25.04
Ru 8.42 8.67 Cd -0.59 3.70
Rh 8.45 9.38 5.08 In -1.92 2.73
Pd 9.12 11.02 -4.81 Sn 2.54 6.99 -6.50
Ag -5.84 -2.12 -5.81 Sb 5.80 10.45 -12.70
Ba -33.63 -28.68 Cs -33.09 -27.28
La -22.65 -19.75 Hg 0.12 4.64
Hf -17.32 -16.72 Tl -4.14 0.91
Ta -12.52 -12.92 Pb -1.95 3.16
W -2.27 -2.95 4.52 Bi -0.56 4.54
Re 4.58 4.28 Dy -21.19 -18.66
Os 8.40 8.45 Ho -21.20 -18.65
Ir 11.46 11.94 Er -20.90 -18.45
Pt 13.67 14.79 1.52 Tm -20.91 -18.47
Au 7.32 10.20 -8.18 Yb -20.92 -18.48
Nd -21.84 -19.13 Lu -20.64 -18.31
Pm -21.47 -18.87 Th -18.99 -16.94
Sm -21.50 -18.87 U -14.38 -13.76
Eu -21.50 -18.87 Pu -16.24 -15.04
Gd -21.50 -18.88 Ce -22.23 -19.42
Tb -21.18 -18.64 Pr -21.85 -19.13
Li -14.48 -10.01 H 18.97 22.72 3.98
Table 3  Comparison between experimental and calculated ε O j
Fig.4  Relation between experimental and calculated ε O j of the fourth periodic elements in liquid Fe at 1873 K
Fig.5  Relation between experimental and calculated ε O j of the fifth periodic elements in liquid Fe at 1873 K
Fig.6  Relation between experimental and calculated ε O j of the sixth periodic elements in liquid Fe at 1873 K
Element Lit[10] Cal Exp[11] Element Lit[10] Cal Exp[11]
Ca -31.12 -33.12 Au 2.21 1.88 -0.25
Sc -19.95 -22.07 Nd -22.64 -24.75
Ti -13.78 -15.27 Pm -22.09 -24.22
V -8.49 -9.15 -3.89 Sm -22.16 -24.27
Cr -3.33 -3.44 -2.13 Eu -22.16 -24.27
Mn -7.79 -8.54 -5.86 Gd -22.16 -24.27
Co 1.01 0.71 0.58 Tb -21.70 -23.82
Ni 1.91 1.49 -0.054 Dy -21.72 -23.83
Cu -5.23 -5.49 -2.35 Ho -21.77 -23.86
Sr -35.07 -37.04 Er -21.29 -23.40
Y -22.16 -24.27 Tm -21.30 -23.42
Zr -17.03 -18.94 Yb -21.31 -23.43
Nb -9.18 -9.97 -5.63 Lu -20.85 -22.99
Mo -2.29 -2.13 0.35 Th -18.81 -20.85
Tc 4.43 4.32 U -13.17 -14.57
Ru 5.89 5.78 Pu -15.95 -17.69
Rh 4.22 3.59 Ce -23.16 -25.26
Pd 2.45 1.22 Pr -22.64 -24.75
Ag -8.97 -9.20 H 11.49 11.16 2.67
Ba -37.35 -39.43 Li -18.21 -19.38
La -23.71 -25.80 Be 8.56 8.96
Hf -15.70 -17.61 B 16.45 17.01 6.86
Ta -9.45 -10.29 -10.34 C 21.48 20.39 6.26
W -0.17 0.23 6.03 N 25.05 21.70 1.32
Re 4.35 4.70 Na -25.32 -26.02
Os 6.37 6.43 Mg -12.76 -13.50
Ir 7.57 7.20 Al 2.25 2.04 5.06
Pt 7.68 6.75 4.65 Si 8.76 8.76 9.12
In -6.91 -7.17 P 20.50 20.20 4.90
Sn -2.67 -2.88 -3.27 K -34.71 -35.41
Sb -0.40 -0.56 0.67 Zn -2.12 -2.39
Cs -40.06 -40.82 Ga -0.54 -0.81
Hg -5.34 -5.53 Ge 4.20 4.03 3.89
Tl -9.76 -9.91 As 9.26 9.11 0.92
Pb -8.08 -8.17 -41.80 Rb -37.42 -38.16
Bi -6.79 -6.89 Cd -5.33 -5.59
Table 4  Comparison between experimental and calculated ε S j
Fig.7  Relation between experimental and calculated ε S j of the second periodic elements in liquid Fe at 1873 K
Fig.8  Relation between experimental and calculated ε S j of the fourth periodic elements in liquid Fe at 1873 K
Fig.9  Relation between experimental and calculated ε S j of the fifth periodic elements in liquid Fe at 1873 K
Fig.10  Relation between experimental and calculated ε S j of the sixth periodic elements in liquid Fe at 1873 K
Fig.11  Comparison between calculated and experimental enthalpies of formation of Nb-compounds
Fig.12  Comparison between calculated and experimental enthalpies of formation of Ag-compounds
Fig.13  Comparison between experimental and calculated data of enthalpies of formation of Pt-compounds
1 J. In-Ho, Sergei A. Decterov,A thermodynamic model for deoxidation equilibria in steel, Metall. Mater. Trans. B, 35B, 493(2004)
2 Y. Shinya, K. Yoichi, K. Zensaku,Activity coefficient of oxygen in copper-tellurium melts, Metall. Trans. B, 17B, 171(1986)
3 O. Shinya, K. Zenzaku,Thermodynamic study of oxygen in liquid elements of group Ib to VIb, Transactions of the Japan Institute of Metals, 22(8), 558(1981)
4 Jean L, Michele N. Interactions between metal slag melts: Steel desulfurization, Metall. Mater. Trans. B, 73, 493(2011)
5 CHEN Xingqiu,YAN Xinlin, DING Xueyong, Enthalpies of pormation for compounds: a century and comes of age for density functional based computations, Journal of Rare Earths, 22, 1(2004)
5 (陈星秋, 严新林, 丁学勇, 化合物生成焓: 一百年和密度泛函基量子机制的原子模型新时代, 中国稀土学报, 22, 1(2004))
6 DING Xueyong, FAN Peng, LUO Lihua, Alloy Melts Thermodynamic Model, Prediction and Software Development (Shenyang, Northeastern University Press , 1998)p.30
6 (丁学勇, 范 鹏, 罗利华, 合金熔体热力学模型、预测值及其软件开发 (沈阳, 东北大学出版社, 1998)p.30)
7 X. Y. Ding, P. Fan, W. Wang,Thermodynamic calculation for alloy systems, Metall. Mater. Trans. B, 30B, 271(1999)
8 F. R. de Boer, R. Boom, W. C. M. Matttens,Cohesion in Metals: Transition Metal Alloys (Netherlands, North-Holland Physics Publishing, 1989)
9 Xing-Qiu Chen, R. Podloucky,Miedema’s model revised: The Parameters for Ti, Zr, and Hf, Computer Coupling of Phase Diagram and Thermochemistry, Calphad, 30, 266(2006)
10 J. Neuhausen, B. Eichler,Extension of Miedema’s macroscopic atom model to the elements of group 16(O, S, Se, Te, Po), Paul Scherrer Institut, 2003
11 Mitsutaka Hino,Kimihisa Ito, Thermodynamic Data for Steelmaking (Japan, Tohoku Printing Co.Ltd, 2010)
12 S. P. Sun, D. Q. Yi, Y. Jiang,An improved atomic size factor used in Miedema’s model for binary transition metal systems, Chem. Phys. Lett., 513, 149(2011)
13 A. R. Miedema,On the heat of formation of solid alloys II, Journal of the Less-Common Metals, 46, 67(1976)
14 S. V. Meschel, X. Q. Chen, O. J Kleppa,Philip Nash, The standard enthalpies of formation of some intermetallic compounds of early 4d and 5d transition metals by high temperature direct synthesis calorimetry, Calphad, 33, 55(2009)
15 X. Q. Chen, W. Wolf, R. Podloucky, P. Rogl,Comment on “Enthalpies of formation binary Laves phases”, Intermetallics, 12, 59(2004)
16 Jerome Assal,Bengt Hallstedt, Ludwig J. Gauckler, Thermodynamic assessment of the silver-oxygen system, J. Am. Ceram. Soc., 80(12), 3054(1997)
17 IhsanBarron, Translated by CHENG Nailiang, NIU Sitong, XU Guiying, Thermochemical Data of Pure Substances (Beijng, Science Press, 2003)
17 (伊赫桑·巴伦著, 程乃良, 牛四通, 徐桂英译, 纯物质热化学数据手册 (北京, 科学出版社, 2003)
18 P. A. G. O’Hare, G. K. Johnson,Thermochemistry of inorganic sulfur compounds VII. Standard molar enthalpy of formation at 298.15K, high-temperature enthalpy increments, and other thermodynamic properties to 1100K of titanium disulfide, TiS2, The Journal of Chemical Thermodynamics, 18(2), 189(1986)
19 Herve Toulhoat, Pascal Raybaud, Slavik Kasztelan, et al. Tansition metals to sulfur binding energies relationship to catalytic activities in HDS: back to Sabatier with first principle calculations, Catalysis Today, 50(3-4), 629(1999)
20 Suraj Deore, Alexandra Navrotsky. Oxide melt solution calorimetry of sulphides: Enthalpy of formation of sphalerite,galena, greenockite, and hawleyite, Am. Mineral, 91, 400(2006)
21 A. Zubkov, T. Fujino, N. Sato, K. Yamada,Enthalpies of formationof the palladium sulphides, The Journal of Chemical Thermodynamics, 30(5), 571(1998)
22 C. Toffolon, C. Servant,Thermodynamic assessment of the Fe-Nb System, Calphad, 24(2), 97(2000)
23 S. V. Meschel, O. J. Kleppa,The standard enthalpies of formation of some intermetallic compounds of transition metals by high temperature direct synthesis calorimetry, J. Alloys Compd., 415, 143(2006)
24 A. Bolcavage, U. R. Kattner,A reassessment of the calculated Ni-Nb phase diagram, Journal of Phase Equilibria, 17(2), 92(1996)
25 Letitia Topor, O. J. Kleppa,Standard enthalpies of formation of PtTi, PtZr, and PtHf, Metall. Trans. A, 19A, 1827(1988)
26 Q. T. Guo, O. J. Kleppa,Standard enthalpies of formation of Ni3V, Ni3Hf, Pd3Hf, and Pt3Sc and systematics of for Ni3Me (Me=La, Hf, Ta), Pd3Me(Me=La, Hf, Ta), and Pt3Me (Me=Sc, Ti, V or Y, Zr, Nb) alloys, J. Phys. Chem., 99, 2854(1995)
27 Q. T. Guo, O. J. Kleppa,Standard enthalpies of formation of some holmium alloys, Ho+Me (Me=Ni, Ru, Pd, Ir, Pt), determined by high temperature direct synthesis calorimetry, J. Alloys Compd., 234, 280(1996)
28 J. H. Zhu, C. T. Liu, L. M. Pike, P. K. Liaw,Enthalpies of formation of binary Laves phases, Intermetallics, 10, 579(2002)
29 K. Fitzner, W. G. Jung, O. J. Kleppa,Thermochemistry of binary alloys of transition metals: the Me-Sc, Me-Y, and Me-La (Me=Ag, Au) systems, Metall. Trans. A, 22A, 1103(1991)
30 S. V. Meschel, O. J. Kleppa,Thermochemistry of some binary alloys of Samarium with the noble metals(Cu, Ag, Au) by high temperature direct synthesis calorimetry, J. Alloys Compd., 416, 93(2006)
31 S. V. Meschel, O. J. Kleppa,Thermochemistry of some binary alloys of silver with the lanthanide metals by high temperature direct synthesis calorimetry, J. Alloys Compd., 376, 73(2004)
32 Q. T. Guo, O. J. Kleppa,Standard enthalpies of formation of Ni3Ta, Pd3Ta, Pt3Nb, Pt2V, Pt3V by high-temperature direct synthesis calorimetry, J. Alloys Compd., 205, 63(1994)
33 Q. T. Guo, O. J. Kleppa,Standard enthalpies of formation of terbium alloys, Tb+Me (Me=Ni, Ru, Rh, Pd, Ir, Pt), by high-temperature direct synthesis calorimetry, J. Alloys Compd., 221, 50(1995)
34 S. V. Meschel, O. J. Kleppa,Standard enthalpies of formation of some 3d, 4d and 5d transition-metal stannides by direct synthesis calorimetry, Thermochimica Acta, 314, 205(1998)
35 N. Selhaoui, O. J. Kleppa,Standard enthalpies of formation of scandium alloys, Sc+Me (Me=Fe, Co, Ni, Ru, Rh, Pd, Ir, Pt), by high-temperature calorimetry, J. Alloys Compd., 191, 155(1993)
36 N Selhaoui, O. J. Kleppa,Standard enthalpies of formation of scandium alloys, Sc+Me (Me=Fe, Co, Ni, Ru, Rh, Pd, Ir, Pt), by high-temperature calorimetry, J. Alloys Compd., 191, 145(1993)
37 Q. T. Guo, O. J. Kleppa,Standard enthalpies of formation of terbium alloys, Tb+Me (Me=Ni, Ru, Rh, Pd, Ir, Pt), by high-temperature direct synthesis calorimetry, J. Alloys Compd., 221, 45(1995)
[1] YANG Dongtian, XIONG Liangyin, LIAO Hongbin, LIU Shi. Improved Design of CLF-1 Steel Based on Thermodynamic Simulation[J]. 材料研究学报, 2023, 37(8): 590-602.
[2] JIANG Shuimiao, MING Kaisheng, ZHENG Shijian. A Review on Grain Boundary Segregation, Interfacial Phase and Mechanical Property Adjusting-controlling for Nanocrystalline Materials[J]. 材料研究学报, 2023, 37(5): 321-331.
[3] YAN Chunliang, GUO Peng, ZHOU Jingyuan, WANG Aiying. Electrical Properties and Carrier Transport Behavior of Cu Doped Amorphous Carbon Films[J]. 材料研究学报, 2023, 37(10): 747-758.
[4] SUN Yi, HAN Tongwei, CAO Shumin, LUO Mengyu. Tensile Properties of Fluorinated Penta-Graphene[J]. 材料研究学报, 2022, 36(2): 147-151.
[5] LU Xiaoqing,ZHANG Quande,WEI Shuxian. Theoretical Study on Photoelectric Characteristic of A-π-D-π-A Indole-based Dye Sensitizers[J]. 材料研究学报, 2020, 34(1): 50-56.
[6] Xuexiong LI,Dongsheng XU,Rui YANG. CPFEM Study of High Temperature Tensile Behavior of Duplex Titanium Alloy[J]. 材料研究学报, 2019, 33(4): 241-253.
[7] Li HUANG. Stability and Heat storage Capacity of Phase Change Emulsion Paraffin/Water[J]. 材料研究学报, 2017, 31(10): 789-795.
[8] Liang ZHU,Jing WANG,Xiaohui LI,Hongbo SUO,Yiliang ZHANG. R-S-N Mathematical Model Based on TC18 by BW High Cycle Fatigue Test Data[J]. 材料研究学报, 2015, 29(9): 714-720.
[9] Yang CHEN,Cheng QIAN,Zhitang SONG,Guoquan MIN. Measurement of Compressive Young’s Modulus of Polymer Particles Using Atomic Force Microscopy[J]. 材料研究学报, 2014, 28(7): 509-514.
[10] Guiqin YU,Jianjun LIU,Yongmin LIANG. Synthesis and Tribological Performance of Guanidinium Ionic Liquids as Lubricants for Steel /Steel Contacts[J]. 材料研究学报, 2014, 28(6): 448-454.
[11] Xiaogang WANG,Yueyi LI,Hailan WANG,Cunlong ZHOU,Qinxue HUANG. Numerical Modeling for Roller Leveling Process of Bimetal-Plate[J]. 材料研究学报, 2014, 28(4): 308-313.
[12] Wu YAO,Mengxue WU,Yongqi WEI. Determination of Reaction Degree of Silica Fume and Fly Ash in a Cement - silica fume - fly ash Ternary Cementitious System[J]. 材料研究学报, 2014, 28(3): 197-203.
[13] Ruwu WANG,Jing LIU,Zhanghua GAN,Chun ZENG,Fengquan ZHANG. Crystallization Kinetics of Amorphous Alloys Fe73.5Si13.5-xGexB9Cu1Nb3(x=3, 6)[J]. 材料研究学报, 2014, 28(3): 204-210.
[14] Lei LI,Ke QIN,Haitao ZHANG,Zhihao ZHAO,Qingfeng ZHU,Yubo ZUO,Jianzhong CUI. Crystallographic Features of a Solidified Hypoeutectic Zn-4.45%Al Alloy[J]. 材料研究学报, 2014, 28(2): 126-132.
[15] Yanen WANG,Qinghua WEI,Mingming YANG,Shengmin WEI. Molecular Dynamics Simulation of Mechanical Properties and Surface Interaction for HA/NBCA[J]. 材料研究学报, 2014, 28(2): 133-138.
No Suggested Reading articles found!