Please wait a minute...
Chinese Journal of Materials Research  2014, Vol. 28 Issue (2): 81-87    DOI: 10.11901/1005.3093.2013.365
Current Issue | Archive | Adv Search |
Research Progress on Effect of Length Scale on Electrical Resistivity of Metals
Guangping ZHANG1,**(),Menglin LI1,Ximao WU2,Chunhe LI2,Xuemei LUO1
1. Shenyang National Laboratory for Materials Science, Institute of Metal Research, ChineseAcademy of Sciences, Shenyang 110016
2. Northeast Electric Power Research Institute, Liaoning Electric Co., LTD, Shenyang 110006
Cite this article: 

Guangping ZHANG,Menglin LI,Ximao WU,Chunhe LI,Xuemei LUO. Research Progress on Effect of Length Scale on Electrical Resistivity of Metals. Chinese Journal of Materials Research, 2014, 28(2): 81-87.

Download:  HTML  PDF(1549KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

With the development of micro/nano-technologies, microstructural scales or geometrical dimensions of metal conductors in the micro/nano-devices are becoming shrunk from macroscopic scale to micron scale, submicron scale and even nanometer scale, leading to the fact that the electrical resistivity of metal conductors at room temperature tends to exhibit evident size effects. Recent studies on the electrical resistivity of metal conductors at different length scales were reviewed in this paper, focusing on the effects of the geometrical scales of microscalematerials and of the scale of microstructures and defects in the materials as well as the relevant theoretical models. Finally the developing tendency of the investigations on the electrical resistivity of metal conductors and the service reliability of the microscale metals in the future are also addressed.

Key words:  foundational discipline in materials science      electrical resistivity      reviews      size effect      microstructure      microscale     
Received:  31 May 2013     
Fund: *Supported by the 2012 Scientific Project of National Grid Corporation of China and the National High Technology Research and Development Program of China No. 2010CB631003.

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2013.365     OR     https://www.cjmr.org/EN/Y2014/V28/I2/81

Fig.1  Variation of resistivity and electrical conductivity of commercial pure Cu with respect to differentARB process cycles[30]
Fig.2  Schematic illustration of effects on electrical resistivity of metals
Fig.3  Electrical resistivity as a function of thickness of Al, Au and Cu films[39]
Fig.4  Electrical resistivity as a function of individual layer thickness of Cu/Ta multilayers (a) and variation of the resistivity of Cu/Ta multilayers measured experimentally and predicted in termsof the F-S, M-S and the new FS-MS combined models[26] (b)
Fig.5  Relationship between electrical conductivity and length scale of pure copper
1 J. D. Plummer, M. D. Deal, P. B. Griffin,Silicon VLSI technology: Fundamentals, Practice and Modeling(Prentice Hall, 2000)
2 P. Moon, V. Chikarmane, K. Fischer, R. Grover, T. A. Ibrahim, D. Ingerly, K. J. Lee, C. Litteken, T. Mule, S. Williams,Process and electrical results for the on-die Interconnect stack for Intel's 45nm process generation, Intel Technology J., 12, 529(2008)
3 D. R. Frear,Materials issues in area-array microelectronic packaging, JOM-J. Miner. Met.& Mater. Soc., 51(2), 22(1999)
4 A. I. Kingon, J. P. Maria, S. K. Streiffer,Alternative dielectrics to silicon dioxide for memory and logic devices, Nature, 406(6799), 1032(2000)
5 L. L. Melo, A. R. Vaz, M. C. Salvadori, M. Cattani,Grain sizes and surface roughness in platinum and gold thin films, J. Metastab. Nanocryst., 20-21, 623(2004)
6 G. P. Zhang, Z. G. Wang,Progress in fatigue of small dimensional materials, Acta Metall. Sinica, 41(1), 1(2005)
7 G. P. Zhang, C. A. Volkert, R. Schwaiger, R. Monig, O. Kraft,Fatigue and thermal fatigue damage analysis of thin metal films, Microelectron. Reliab., 47(12), 2007(2007)
8 M. Wang, B. Zhang, G. P. Zhang, C. S. Liu,Evaluation of thermal fatigue damage of 200-nm-thick Au interconnect lines, Scripta Mater., 60(9), 803(2009)
9 B. Zhang, Q. Y. Yu, J. Tan, G. P. Zhang,Electric current-induced failure of 200-nm-thick gold interconnects, J Mater Sci Technol, 24(6), 895(2008)
10 G. P. Zhang, X. F. Zhu, Y. P. Li,Evaluation of reliability of metal ilms/multilayers, El Packag Tech Conf, 890(2008)
11 M. Wang, B. Zhang, C. S. Liu, G. P. Zhang,Study on thermal fatigue failure of thin gold film with alternating current loading, Acta Metall. Sinica, 47(5), 601(2011)
12 G. P. Zhang, C. A. Volkert, R. Schwaiger, P. Wellner, E. Arzt, O. Kraft,Length-scale-controlled fatigue mechanisms in thin copper films, Acta Mater., 54(11), 3127(2006)
13 M. Wang, B. Zhang, G. P. Zhang, C. S. Liu,Scaling of reliability of gold interconnect lines subjected to alternating current, Appl. Phys. Lett., 99(1), 011910(2011)
14 N. Agrait, A. L. Yeyati, J. M. van Ruitenbeek,Quantum properties of atomic-sized conductors, Physics Reports-Review Section of Physics Letters, 377(2-3), 81(2003)
15 D. Josell, S. H. Brongersma, Z. Tokei,Size-dependent resistivity in nanoscale interconnects, Ann. Rev. Mater. Res., 39, 231(2009)
16 S. O.Kasap,Principles of electronic materials and devices, 3rd ed (McGraw-Hill, 2006)
17 J. R. Sambles,The resistivity of thin metal films—Some critical remarks, Thin Solid Films, 106(4), 321(1983)
18 L. M. Clarebrough, M. E. Hargreaves, M. H. Loretto,Electrical resistivity of dislocations in face-centred cubic metals, Philos. Mag., 7(73), 115(1962)
19 D. A. Greenwood,Note on theory of thermal conduction in metals, Proc. Phys. Soc. London, 80(513), 226(1962)
20 Y. Namba,Resisitivity and temperature coefficient of thin metal films with rough surface, Japanese J. App. Phys., 9(11), 1326(1970)
21 K. Nallamshetty, M. A. Angadi,Transport-properties of Cu/Cr multilayer films, Physica Status Solidi A-App. Res., 132(2), 397(1992)
22 Q. T. Jiang, M. H. Tsai, R. H. Havemann,Line width dependence of copper resistivity, Proceedings of the IEEE 2001 International, 227(2001)
23 J. Alonso, M. L. Fdez-Gubieda, G. Sarmiento, J. M. Barandiaran, A. Svalov, I. Orue, J. Chaboy, L. F. Barquin, C. Meneghini, T. Neisius, N. Kawamura,Influence of the interface on the electronic channel switching of a Fe-Ag thin film on a Si substrate, App. Phy. Lett., 95(8), 082103(2009)
24 R. L. Graham, G. B. Alers, T. Mountsier, N. Shamma, S. Dhuey, S. Cabrini, R. H. Geiss, D. T. Read, S. Peddeti,Resistivity dominated by surface scattering in sub-50 nm Cu wires, App. Phys. Lett., 96(4), 042116(2010)
25 M. C. Salvadori, A. R. Vaz, R. J. C. Farias, M. Cattani,Electrical resistivity of nanostructured platinum and gold thin films, Surf. Rev. Lett., 11(2), 223(2004)
26 M. Wang, B. Zhang, G. P. Zhang, Q. Y. Yu, C. S. Liu,Effects of interface and grain boundary on the electrical resistivity of Cu/Ta multilayers, J. Mater. Sci. Tech., 25(5), 699(2009)
27 H. Gleiter,Nanocrystalline Materials, Prog. Mater. Sci., 33(4), 223(1989)
28 E. Botcharova, J. Freudenberger, L. Schultz,Mechanical and electrical properties of mechanically alloyed nanocrystalline Cu-Nb alloys, Acta Mater., 54(12), 3333(2006)
29 A. Habibi, M. Ketabchi,Enhanced properties of nano-grained pure copper by equal channel angular rolling and post-annealing, Mater. Design, 34, 483(2012)
30 S. A. Hosseini, H. D. Manesh,High-strength, high-conductivity ultra-fine grains commercial pure copper produced by ARB process, Mater.& Design, 30(8), 2911(2009)
31 I. Nakamichi,Electrical resistivity and grain boundaries in metals, Intergranular and Interphase Boundaries in Materials, Pt1, 207, 47(1996)
32 L. H. Qian, Q. H. Lu, W. J. Kong, K. Lu,Electrical resistivity of fully-relaxed grain boundaries in nanocrystalline Cu, Scripta Mater., 50(11), 1407(2004)
33 X. H. Chen, L. Lu, K. Lu,Electrical resistivity of ultrafine-grained copper with nanoscale growth twins, J. App. Phys., 102(8), 083708(2007)
34 J. J. Thomson,Electric conductivity of thin metallic films, Proc. of the Cambridge Philosophical Society, 11, 120(1901)
35 K. Fuchs,The conductivity of thin metallic films according to the electron theory of metals, Proc. of the Cambridge Philosophical Society, 34, 100(1938)
36 E. H. Sondheimer,The mean free path of electrons in metals, Adv. in Phys., 1(1), 1(1952)
37 A. F. Mayadas, M. Shatzkes,Electrical-resistivity model for polycrystalline films - case of arbitrary reflection at external surfaces, Phys. Rev. B, 1(4), 1382(1970)
38 K. M. Mannan, K. R. Karim,Grain boundary contribution to the electrical conductivity of polycrystalline Cu films, J. of Phys. F: Met. Phys., 5(9), 1687(1975)
39 J. M. Camacho, A. I. Oliva,Surface and grain boundary contributions in the electrical resistivity of metallic nanofilms, Thin Solid Films, 515(4), 1881(2006)
40 X. Zhang, X. H. Song, X. G. Zhang, D. L. Zhang,Grain boundary resistivities of polycrystalline Au films, Europhys. Lett, 96(1), 17010(2011)
41 O. Anderoglu, A. Misra, F. Ronning, H. Wang, X. Zhang,Significant enhancement of the strength-to-resistivity ratio by nanotwins in epitaxial Cu films, J. of App. Phys., 106(2), 024313(2009)
42 C. Durkan, M. E. Welland,Size effects in the electrical resistivity of polycrystalline nanowires, Phys. Rev. B, 61(20), 14215(2000)
43 Q. J. Huang, C. M. Lilley, M. Bode,Surface scattering effect on the electrical resistivity of single crystalline silver nanowires self-assembled on vicinal Si (001), App. Phys. Lett., 95(10), 103112(2009)
44 Y. Kitaoka, T. Tono, S. Yoshimoto, T. Hirahara, S. Hasegawa, T. Ohba,Direct detection of grain boundary scattering in damascene Cu wires by nanoscale four-point probe resistance measurements, App. Phys. Lett., 95(5), 052110(2009)
45 S. M. Rossnagel, T. S. Kuan,Alteration of Cu conductivity in the size effect regime, J. Vac. Sci.& Techno. B, 22(1), 240(2004)
46 J. W. Lim, K. Mimura, M. Isshiki,Thickness dependence of resistivity for Cu films deposited by ion beam deposition, App. Surf. Sci., 217(1-4), 95(2003)
[1] PAN Xinyuan, JIANG Jin, REN Yunfei, LIU Li, LI Jinghui, ZHANG Mingya. Microstructure and Property of Ti / Steel Composite Pipe Prepared by Hot Extrusion[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[5] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[6] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[7] YANG Dongtian, XIONG Liangyin, LIAO Hongbin, LIU Shi. Improved Design of CLF-1 Steel Based on Thermodynamic Simulation[J]. 材料研究学报, 2023, 37(8): 590-602.
[8] SHI Chang, DU Yuhang, LAI Liming, XIAO Siming, GUO Ning, GUO Shengfeng. Mechanical Properties and Oxidation Resistance of a Refractory Medium-entropy Alloy CrTaTi[J]. 材料研究学报, 2023, 37(6): 443-452.
[9] LEI Zhiguo, WEN Shengping, HUANG Hui, ZHANG Erqing, XIONG Xiangyuan, NIE Zuoren. Influence of Rolling Deformation on Microstructure and Mechanical Properties of Al-2Mg-0.8Cu(-Si) Alloy[J]. 材料研究学报, 2023, 37(6): 463-471.
[10] XIA Bo, WANG Bin, ZHANG Peng, LI Xiaowu, ZHANG Zhefeng. Effect of Tempering Temperature on Microstructure and Impact Properties of Two High-strength Leaf Spring Steels[J]. 材料研究学报, 2023, 37(5): 341-352.
[11] JIANG Shuimiao, MING Kaisheng, ZHENG Shijian. A Review on Grain Boundary Segregation, Interfacial Phase and Mechanical Property Adjusting-controlling for Nanocrystalline Materials[J]. 材料研究学报, 2023, 37(5): 321-331.
[12] JIANG Menglei, DAI Binbin, CHEN Liang, LIU Hui, MIN Shiling, YANG Fan, HOU Juan. Effect of Building Dimensions by Selective Laser Melting on Pitting Properties of 304L Stainless Steel[J]. 材料研究学报, 2023, 37(5): 353-361.
[13] ZHANG Shuaijie, WU Qian, CHEN Zhitang, ZHENG Binsong, ZHANG Lei, XU Pian. Effect of Mn on Microstructure and Properties of Mg-Y-Cu Alloy[J]. 材料研究学报, 2023, 37(5): 362-370.
[14] ZHANG Ruixue, MA Yingjie, JIA Yandi, HUANG Sensen, LEI Jiafeng, QIU Jianke, WANG Ping, YANG Rui. Microstructure Evolution and Element Partitioning Behavior during Heat-treatment in Metastable β Titanium Alloy[J]. 材料研究学报, 2023, 37(3): 161-167.
[15] LIN Shifeng, XU Dongan, ZHUANG Yanxin, ZHANG Haifeng, ZHU Zhengwang. Preparation and Mechanical Properties of TiZr-based Bulk Metallic Glass/TC21 Titanium Alloy Dual-layered Composites[J]. 材料研究学报, 2023, 37(3): 193-202.
No Suggested Reading articles found!