Please wait a minute...
Chinese Journal of Materials Research  2014, Vol. 28 Issue (2): 126-132    DOI: 10.11901/1005.3093.2013.359
Current Issue | Archive | Adv Search |
Crystallographic Features of a Solidified Hypoeutectic Zn-4.45%Al Alloy
Lei LI(),Ke QIN,Haitao ZHANG,Zhihao ZHAO,Qingfeng ZHU,Yubo ZUO,Jianzhong CUI
Key Laboratory of Electromagnetic Processing of Materials, Ministry of Education, Northeastern University, Shenyang 110819
Cite this article: 

Lei LI,Ke QIN,Haitao ZHANG,Zhihao ZHAO,Qingfeng ZHU,Yubo ZUO,Jianzhong CUI. Crystallographic Features of a Solidified Hypoeutectic Zn-4.45%Al Alloy. Chinese Journal of Materials Research, 2014, 28(2): 126-132.

Download:  HTML  PDF(6470KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

A hypoeutectic Zn-4.45 mass%Al alloy was molten and then slowly solidified in an electrical furnace. The microstructure and the relevant crystallographic feature on longitudinal section of the solidified alloy ingot were characterized by means of SEM with EBSD technique. The results show that feather-like structure consisted of some elongated eutectic colonies is developed in the upper part of the specimen and a specific crystallographic orientation relationship (OR) () exists between β and αin the eutectic colonies. Moreover, the primary β dendrites are segregated in the lower part of the specimen with a flat morphology: six primary arms grow quickly along but slowly along <0001>. In addition, some αprecipitates are present in the interior of primary β dendrites, and there exists certain OR between β and α as that mentioned above. However, no specific OR is found between the primary β dendrites and their attached pseudo-primary αphase as well as between the adjacent eutectic β and α.

Key words:  foundational discipline in materials science      solidification      microstructure      crystallography      EBSD     
Received:  28 May 2013     
Fund: *Supported by National Natural Science Foundation of China No. 51201029 and China Postdoctoral Science Foundation No. 2012M520637.

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2013.359     OR     https://www.cjmr.org/EN/Y2014/V28/I2/126

Fig.1  Macrostructure in the longitudinal section of the specimen (a) upper part and (b) lower part
  Feather-like microstructure (a) in the upper part of the specimen, the pole figures of (b) {0001}, {111} and (c)< 1 2 ? 10 >, <110> corresponding to the lamellar eutectic b and α phases respectively. Axes X and Y are the defined two-dimensioned coordinate system of the observation plane
Fig.3  Microstructure in the lower part of the specimen
Fig.4  SEM images of primary β phase with (a) dendritic and (b) columnar forms, crystallographic growth directions of primary b phase (c) denoted on the hexagonal structure and internal Al-rich αprecipitates in primary β phase (d). The figures below the SEM images are the <0001> and< 10 1 ? 0 >direction pole figures corresponding to the primary β phase in (a) and (b), respectively, and those below (c) and (d) are the {0001}, {111} and < 1 2 ? 10 >, <110> pole figures corresponding to the primary β phase and the internal αprecipitates in (d), respectively.
Fig.5  SEM images of (a) primary α phase with the adjacent eutectic structures and (b) foot-like morphology composed of primary β phase and the adjacent toe-like eutectic structure. The contrast orientation map in (a) corresponds to the SEM image and the < 1 2 ? 10 > and <110> pole figures below the SEM image in (a) correspond to the eutectic β and α phases, respectively.
1 ZHANG Yuping,ZHANG Yan, LI Yi, SUN Gang. Friction and wear properties of high-strength Zn-Al alloy, Special Casting & Nonferrous Alloys, (3), 5(1996)
1 (张玉平, 张 琰, 李 翼, 孙 钢, 高强度锌铝合金摩擦磨损特性的试验研究, 特种铸造及有色合金, (3), 5(1996))
2 SUN Lianchao, TIAN Rongzhang, Physical Metallurgy of Zinc and Zinc Alloys, 1, (Changsha, Zhongnan Industry University Press, 1994) p.5
2 (孙连超, 田荣璋, 锌及锌合金物理冶金学, 1, (长沙, 中南工业大学出版社, 1994) p.5)
3 WANG Jianhua,WANG Xiande, SU Xuping, TU Hao, Effect of Lanthanum on Microstructure and Mechanical Properties of Zinc-Aluminum Alloy, Foundry, 60(2), 171(2011)
4 YANG Liushuan, CHEN Dequan, WANG Hongmin, High Aluminium-Zinc Alloy, 1, (Xian, Northwestern Polytechnical University Press, 1997) p.1
4 (杨留栓, 陈全德, 王洪敏, 高铝锌合金, 1, (西安, 西北工业大学出版社, 1997) p.1)
5 F. Gonzales, M. Rappaz,Dendrite growth directions in aluminum-zinc alloys, Metallurgical and Materials Transactions A, 37(9), 2797(2006)
6 M. Rheme, F. Gonzales, M. Rappaz,Growth directions in directionally solidified Al-Zn and Zn-Al alloys near eutectic composition, Scripta Materialia, 59(4), 440(2008)
7 F. Gonzales, M. Rappaz,Grain selection and texture evolution in directionally solidified Al-Zn alloys, Metallurgical and Materials Transactions A, 39(9), 2148(2008)
8 J. Deguercy, M. F. Denanot, M. Fumeron, J. P. Guillot, J. Caisso,Consideration on the precipitation sequence in aluminum zinc alloys, Acta Metallurgica, 30(10), 1921(1982)
9 M. X. Zhang, P. M. Kelly,Understanding the crystallography of the eutectoid microstructure in a Zn-Al alloy using the edge-to-edge matching model, Scripta Materialia, 55(7), 577(2006)
10 L. Li, Y. D. Zhang, C. Esling, H. X. Jiang, Z. H. Zhao, Y. B. Zuo, J. Z. Cui,Crystallographic features of primary Al3Fe phase, Journal of Applied Crystallography, 43(1), 1108(2010)
11 L. Li, Y. D. Zhang, C. Esling, H. X. Jiang, Z. H. Zhao, Y. B. Zuo, J. Z. Cui,Crystallographic features of primary Al3Zr phase, Journal of Crystal Growth, 316(1), 172(2011)
12 M. Durman, K. Sawalha, S. Murphy, An electron metallographic study of the commercial zinc-based pressure-die-cast alloy 3, Materials Science and Engineering A, 130(2), 247(1990)
13 L. F. Mondolfo, WANG zhutang, ZHANG Zhenlu, ZHENG Xuan, Aluminum Alloys, Structure and Propertys, (Beijing, Metallurgical Industry Press, 1988)P.34
13 (L. F. Mondolfo, 王祝堂, 张振录, 郑 旋, 铝合金的组织与性能(北京, 冶金工业出版社, 1988) p.341)
14 A. Semoroz, S. Henry, M. Pappaz,Application of the phase-field method to the solidification of hot-dipped galvanized coatings, Metallurgical and Materials Transactions A, 31(2): 487(2000)
15 S. T. Bluni, M. R. Notis, A. R. Marder,Nucleation characteristics and microstructure in off-eutectic Al-Zn alloys, Acta Metallurgica et Materialia, 43(5), 1775(1995)
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[3] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[4] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[5] PAN Xinyuan, JIANG Jin, REN Yunfei, LIU Li, LI Jinghui, ZHANG Mingya. Microstructure and Property of Ti / Steel Composite Pipe Prepared by Hot Extrusion[J]. 材料研究学报, 2023, 37(9): 713-720.
[6] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[7] YANG Dongtian, XIONG Liangyin, LIAO Hongbin, LIU Shi. Improved Design of CLF-1 Steel Based on Thermodynamic Simulation[J]. 材料研究学报, 2023, 37(8): 590-602.
[8] SHI Chang, DU Yuhang, LAI Liming, XIAO Siming, GUO Ning, GUO Shengfeng. Mechanical Properties and Oxidation Resistance of a Refractory Medium-entropy Alloy CrTaTi[J]. 材料研究学报, 2023, 37(6): 443-452.
[9] LEI Zhiguo, WEN Shengping, HUANG Hui, ZHANG Erqing, XIONG Xiangyuan, NIE Zuoren. Influence of Rolling Deformation on Microstructure and Mechanical Properties of Al-2Mg-0.8Cu(-Si) Alloy[J]. 材料研究学报, 2023, 37(6): 463-471.
[10] XIA Bo, WANG Bin, ZHANG Peng, LI Xiaowu, ZHANG Zhefeng. Effect of Tempering Temperature on Microstructure and Impact Properties of Two High-strength Leaf Spring Steels[J]. 材料研究学报, 2023, 37(5): 341-352.
[11] JIANG Shuimiao, MING Kaisheng, ZHENG Shijian. A Review on Grain Boundary Segregation, Interfacial Phase and Mechanical Property Adjusting-controlling for Nanocrystalline Materials[J]. 材料研究学报, 2023, 37(5): 321-331.
[12] ZHANG Shuaijie, WU Qian, CHEN Zhitang, ZHENG Binsong, ZHANG Lei, XU Pian. Effect of Mn on Microstructure and Properties of Mg-Y-Cu Alloy[J]. 材料研究学报, 2023, 37(5): 362-370.
[13] ZHANG Ruixue, MA Yingjie, JIA Yandi, HUANG Sensen, LEI Jiafeng, QIU Jianke, WANG Ping, YANG Rui. Microstructure Evolution and Element Partitioning Behavior during Heat-treatment in Metastable β Titanium Alloy[J]. 材料研究学报, 2023, 37(3): 161-167.
[14] LIN Shifeng, XU Dongan, ZHUANG Yanxin, ZHANG Haifeng, ZHU Zhengwang. Preparation and Mechanical Properties of TiZr-based Bulk Metallic Glass/TC21 Titanium Alloy Dual-layered Composites[J]. 材料研究学报, 2023, 37(3): 193-202.
[15] DONG Yu'ang, YANG Huajie, BEN Dandan, MA Yunrui, ZHOU Xianghai, WANG Bin, ZHANG Peng, ZHANG Zhefeng. Excellent Cryogenic Tensile Properties of Ultra-fine Grained 316L Stainless Steel after Electropulsing Treatment in Liquid Nitrogen[J]. 材料研究学报, 2023, 37(3): 168-174.
No Suggested Reading articles found!