Please wait a minute...
Chinese Journal of Materials Research  2014, Vol. 28 Issue (2): 133-138    DOI: 10.11901/1005.3093.2013.325
Current Issue | Archive | Adv Search |
Molecular Dynamics Simulation of Mechanical Properties and Surface Interaction for HA/NBCA
Yanen WANG1,**(),Qinghua WEI1,2,Mingming YANG1,2,Shengmin WEI1,2
1. Mechatronics School, Northwestern Polytechnical University, Xi’an 710072
2. The Key Laboratory of Contemporary Design and Integrated Manufacturing Technology, Ministry of Education, Northwestern Polytechnical University, Xi’an 710072
Cite this article: 

Yanen WANG,Qinghua WEI,Mingming YANG,Shengmin WEI. Molecular Dynamics Simulation of Mechanical Properties and Surface Interaction for HA/NBCA. Chinese Journal of Materials Research, 2014, 28(2): 133-138.

Download:  HTML  PDF(2756KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Molecular dynamics simulation was applied to investigate the binding energy of NBCA on HA crystallographic planes (001), (100) and (110), and then the mechanical properties and radial distribution function of the HA(110)/NBCA mixed system were calculated and analyzed. The results show that HA (110) has the highest binding energy with NBCA because of its higher planar atom density than that of HA (001) and (100). The mechanical properties of HA(110)/NBCA mixed system is weaker than one-component HA system. However, the NBCA contains 40 monomers, its mechanical properties completely meet the requirements for the artificial bone scaffold. By calculating the radial distribution function of HA(110)/NBCA, the essence of its interface interaction were elucidated. There is a strong interaction between HA crystallographic plane (110) and NBCA, it mainly derives from the hydrogen bonds between O atoms which connect with C atoms of NBCA and H atoms in HA crystal, and a strong adsorption effect can be demonstrated between HA and NBCA.

Key words:  foundational discipline in materials science      HA      NBCA      molecular dynamics      binding energy      mechanical properties      radial distribution function     
Received:  25 May 2013     
Fund: *Supported by National Natural Science Foundation of China Nos. 51175432 & 50905147, the Doctor Special Science and Technological Funding of China Ministry of Education No. 20116102110046, Natural Science Foundation of Shaanxi Province No. 2011JQ7005, the Ph.D. Thesis Innovation Fund of Northwestern Polytechnical University No.201213 and the Graduate Starting Seed Fund of Northwestern Polytechnical University No. Z2013043.

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2013.325     OR     https://www.cjmr.org/EN/Y2014/V28/I2/133

Fig.1  Ball and stick models of the HA surfaces, the dimension unit is angstrom, (a) HA(0 0 1), (b) HA(1 0 0), (c) HA(1 1 0) Color codes: hydrogen atom, white; calcium atom, green; oxygen atom, red; and phosphorus atom, purple
Fig.2  Three-dimensional ball-and-stick models and the chemical structures of the NBCA chain for forty monomers
Forcefield Non- bond Summation method Ensemble Temperature Cut-off distance Thermostat Barostat Equilibrium Production Time Step Frame output
COMPASS Vdw,Coulomb Atom based, Ewald NVT 310 K 1.55 nm Andersen steps Parrinello steps 300,000 100,000 0.1fs Every 300 steps
Table 1  MD Simulation Parameters for HA/NBCA
Fig.3  NBCA on the HA/(100)/(001)/ (110) surface before and after the MD simulation
E H A s u r f a c e (K J? m o l - 1 ) E N B C A (K J? m o l - 1 ) E H A+N B C A (K J? m o l - 1 ) - E i n t e r (K J? m o l - 1 )
(0 0 1) 29485532.92 80290.54 29241730.82 324092.64
(1 0 0) 29780245.51 94178.91 29506537.85 367886.57
(1 1 0) 56216546.17 99364.56 55910123.82 405786.91
Table 2  Binding energy calculation (compass)
Fig.4  The binding energies between the NBCA and HA surfaces
原子团 HA(001) HA(110) HA(100)
C a 0.02 0.23 0.21
P O 4 0.11 0.12 0.11
O H 0.06 0.072 0.072
Table 3  The atom density of the HA surfaces (atom(×0.1 nm)-2)
Axis Young Modulus/GPa Poission Ratios
HA HA/NBCA
X 54.3 50.5 Exy 0.28 Exz 0.29
Y 54.3 51.4 Eyx 0.34 Eyz 0.31
Z 62.5 38.2 Ezx 0.21 Ezy 0.26
Table 4  Young's modulus and Poisson's ratio
Fig.5  The radial distribution function of HA(110)/NBCA
1 LI Yan,ZHENG Jing, Comparative study on mechanical properties of human tooth enamel and artificial hydroxyapatite, Lubrication Engineering, 36(9), 36(2011)
1 (李 彦, 郑 靖, 人牙釉质和合成羟基磷灰石力学性能的对比研究, 润滑与密封, 36(9), 36(2011))
2 Heise U,Osborn J F, Duwe F, Hydroxyapatite ceramic as a bone substitute, International Orthopaedics, 14(3), 329(1990)
3 Sameer R Paital,Narendra B, Calcium phosphate coatings for bio-implant applications: Materials, performance factor, and methodologies, Materials Science and Engineering, 66(1-3), 1(2009)
4 YIN Xianguo,Nano-hydroxyapatite and its composite materials technology progress, S P & BMH Related Engineering, 02, 36(2012)
4 (殷宪国, 纳米羟基磷灰石及其复合材料技术进展, 硫磷设计与粉体工程, 02, 36(2012))
5 HUANG Fulong,DAI Honglian, SHAN Xuezhi, Study on Bone Formation Process of HA/PDLLA Composites in vivo, Chinese Journal of Biomedical Engineering, 26(2), 282(2007)
5 (黄福龙, 戴红莲, 单学智, HA/PDLLA 复合材料的体内成骨过程研究, 中国生物医学工程学报, 26(2), 282(2007))
6 Hong-ping Zhang,Xiong Lu, Yang Leng, Liming Fang, Shuxin Qu, Bo Feng, Jie Weng, Jianxin Wang, Molecular dynamics simulations on the interaction between polymers and hydroxyapatite with and without coupling agents, Acta Biomaterialia, 5, 1169(2009)
7 PAN Haihua,TAO Jinhui, WU Tao, TANG Ruikang, Molecular Simulation of water behavior on Hydroxyapatite Crystal Faces, Inorganic Chemistry Journal, 8(8),(2006)
7 (潘海华, 陶锦辉, 吴 韬, 唐睿康, 羟基磷灰石界面水 行为的分子模拟, 无机化学学报, 8(8),(2006))
8 LI Min,Bone tissue engineering with of porous hydroxyapatite its composites and performance, Hunan: Hunan University of Science and Technology, 12-16(2008)
8 (李 敏, 骨组织工程用多孔羟基磷灰石及其复合材料的制备与性能, 湖南: 湖南科技大学, 12-16(2008))
9 Sun H,Compass: an ab intio force-field optimized for condensedphase application–over view with details on alkane and benzene compounds, Phys Chem B, 02, 7338(1998)
10 Tung KL,Lu KT, Ruaan RC, Lai JY, Molecular dynamics study of the effect of solvent types on the dynamic properties of polymer chains in solution, Desalination, 192, 380(2006)
11 Sun H,Ren P, Fried J R, The COMPASS force field: parameterization and validation for phosphazenes, Computational and Theoretical Polymer Science, 8, 229(1998)
12 Rigby D,Sun H, Eichinger B E, Computer simulations of poly ( ethylene oxide): force field. pvt diagramand cyclization behavior, Polym Int, 44, 311(1997)
13 YANG Xiaozhen, Molecular Modeling and Polymer Materials, Beijing: Science Press, 48-56(2002)
13 (杨小震, 分子模拟与高分子材料, 北京: 科学出版社, 48-56(2002))
14 HUANG Yuan,Li Yanqiu, He Fang, Wang Yulin, Studies on Mechanism of Hydroxyapatite Dissolution, J Clin Stomatol, 28(6), 328(2012)
14 (黄 远, 李彦秋, 何 芳, 王玉林, 羟基磷灰石溶解机理的研究, 临床口腔医学杂志, 28(6), 328(2012))
15 Kay ML,Young RA, Posner AS, Crystal structure of hydroxylapatite, Nature, 204, 1050(1964)
16 Bhowmik R,Katti KS, Katti D, Molecular dynamics simulation of hydroxyapatite-polyacrylic acid interfaces, Polymer, 48, 664(2007)
17 Rybolt TR,Wells CE, Sisson CR, Black CB, Ziegler KA, Evaluation of molecular mechanics calculated binding energies for isolated and monolayer organic molecules on graphite, Colloid Interface Sci, 314, 434(2007)
18 LIU Ying,CAO Zhengdong, LU Shenlong, The studies of artificial bone Young's elastic modulus measurements and the physical stability of the material, Laboratory research and explore, 27(5), 39(2008)
18 (刘 盈, 曹正东, 陆申龙, 人造骨杨氏弹性模量的测量与材料物理稳定性的研究, 实验室研究与探索, 27(5), 39(2008))
19 ZHOU Panpan,The theory study of weak interactions between molecules: hydrogen bonding, van der Waals interactions and halogen bond, Lanzhou University, 2010
19 (周盼盼, 分子间弱相互作用体系的理论研究: 氢键、范 德华相互作用和卤键, 兰州: 兰州大学, 2010)
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[3] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[4] PAN Xinyuan, JIANG Jin, REN Yunfei, LIU Li, LI Jinghui, ZHANG Mingya. Microstructure and Property of Ti / Steel Composite Pipe Prepared by Hot Extrusion[J]. 材料研究学报, 2023, 37(9): 713-720.
[5] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[6] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[7] CHEN Jingjing, ZHAN Huimin, WU Hao, ZHU Qiaolin, ZHOU Dan, LI Ke. Tensile Mechanical Performance of High Entropy Nanocrystalline CoNiCrFeMn Alloy[J]. 材料研究学报, 2023, 37(8): 614-624.
[8] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[9] LIU Ruifeng, XIAN Yunchang, ZHAO Rui, ZHOU Yinmei, WANG Wenxian. Microstructure and Properties of Titanium Alloy/Stainless Steel Composite Plate Prepared by Spark Plasma Sintering[J]. 材料研究学报, 2023, 37(8): 581-589.
[10] YANG Dongtian, XIONG Liangyin, LIAO Hongbin, LIU Shi. Improved Design of CLF-1 Steel Based on Thermodynamic Simulation[J]. 材料研究学报, 2023, 37(8): 590-602.
[11] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[12] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[13] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
[14] FENG Ye, CHEN Zhiyong, JIANG Sumeng, GONG Jun, SHAN Yiyin, LIU Jianrong, WANG Qingjiang. Effect of a NiCrAlSiY Coating on Cyclic Oxidation and Room Temperature Tensile Properties of Ti65 Alloy Plate[J]. 材料研究学报, 2023, 37(7): 523-534.
[15] WANG Wei, XIE Zelei, QU Yishen, CHANG Wenjuan, PENG Yiqing, JIN Jie, WANG Kuaishe. Tribological Properties of Graphene/SiO2 Nanocomposite as Water-based Lubricant Additives[J]. 材料研究学报, 2023, 37(7): 543-553.
No Suggested Reading articles found!