Please wait a minute...
材料研究学报  2017, Vol. 31 Issue (7): 489-494    DOI: 10.11901/1005.3093.2016.629
  研究论文 本期目录 | 过刊浏览 |
聚醚改性MQ树脂增强聚氨酯弹性体
卢秋影, 姜宏伟()
华南理工大学材料科学与工程学院 广州 510640
Polyether Modified MQ Resin Reinforced Polyurethane Elastomer
Qiuying LU, Hongwei JIANG()
School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China
引用本文:

卢秋影, 姜宏伟. 聚醚改性MQ树脂增强聚氨酯弹性体[J]. 材料研究学报, 2017, 31(7): 489-494.
Qiuying LU, Hongwei JIANG. Polyether Modified MQ Resin Reinforced Polyurethane Elastomer[J]. Chinese Journal of Materials Research, 2017, 31(7): 489-494.

全文: PDF(1704 KB)   HTML
摘要: 

在聚氧化丙烯多元醇(PPG)和二苯基甲烷二异氰酸酯(MDI)组成的交联聚氨酯(CPU)体系的基础上添加聚醚改性MQ树脂(E-MQ),制备出E-MQ树脂增强的浇注型聚氨酯弹性体。结果表明:E-MQ树脂与CPU有良好的相容性,制备出的E-MQ增强弹性体具有良好的力学性能。当E-MQ树脂用量为8%(E-MQ树脂占聚氨酯弹性体总质量分数)时增强聚氨酯弹性体的拉伸强度可达20.8 MPa,比CPU基础样提高22.4%,撕裂强度为82 kNm-1,邵尔A硬度为82度。

关键词 高分子材料聚氨酯弹性体聚醚改性MQ树脂拉伸强度耐热性    
Abstract

Based on a cross-linked polyurethane (CPU) system composed of polyoxypropylene polyol (PPG) and diphenylmethane diisocyanate (MDI), a kind of polyether modified MQ (E-MQ) resin was added to prepare E-MQ reinforced pouring type CPU elastomer. The results show that the E-MQ resin has good compatibility with the CPU, and the prepared E-MQ resin reinforced elastomer has excellent mechanical properties. When the content of E-MQ resin is 8% (E-MQ resin accounts for the total mass fraction of the CPU) the tensile strength of polyurethane elastomer reached to 20.8 MPa, increased by 22.4% comparing to the basic CPU, tear strength is 82 KNm-1, Shore A hardness is 82 degrees.

Key wordspolymer material    polyurethane elastomers    polyether modified MQ resin    tensile strength    thermal resistance
收稿日期: 2016-10-27     
ZTFLH:  TQ323.8  
作者简介:

作者简介 卢秋影,女,1988年生,硕士生

图1  聚醚改性MQ树脂(E-MQ)结构及其分布
图2  固化过程的模量-时间流变曲线
图3  聚氨酯弹性体的应力-应变曲线
图4  聚氨酯弹性体的T-tanδ曲线
Control 1 Sample 1 Sample 2 Sample 3
Mass fraction
of E-MQ/%
0 4 8 12
Shore A hardness
/degree
82 83 82 83
Tensile strength
/MPa
17.0 19.6 20.8 18.4
Strain at break
/%
587 579 562 545
Tear strength
/kNm-1
77 79 82 78
Resilience/% 52 50 48 47
表1  E-MQ树脂添加量对聚氨酯弹性体力学性能的影响
图5  聚氨酯弹性体的热稳定性
Control 1 Sample 1 Sample 2 Sample 3
Mass fraction
of E-MQ/%
0 4 8 12
T5% /℃ 327.2 334.4 337.6 340.3
T10% /℃ 343.2 351.2 356.0 358.4
表2  E-MQ树脂添加量对聚氨酯弹性体热稳定性的影响
[1] D. Fragiadakis, J. Runt.Molecular dynamics of segmented polyurethane copolymers: influence of soft segment composition[J]. Macromolecules, 2013, 46(10): 4184
[2] Y. He, D. L. Xie, X. Y. Zhang.The structure, microphase-separated morphology, and property of polyurethanes and polyureas[J]. Journal of Materials Science, 2014, 49(21) : 7339
[3] B. F. Arlas, A. A. Varona, T. Palomares, et al.Studies on the morphology, properties and biocompatibility of aliphatic diisocyanate-polycarbonate polyurethanes[J]. Polymer Degradation and Stability, 2015, 122: 153
[4] R. P. Brannigan, A. Walder, A. P. Dove.Tunable thermoplastic poly(ester-urethane)s based on modified serinol extenders[J]. Macromolecules, 2016, 49(7): 2518
[5] L. Peponi, D. Puglia, L. Torre, et al.Processing of nanostructured polymers and advanced polymeric based nanocomposites[J]. Materials Science and Engineering R, 2014, 85: 1
[6] D. W?odarczyk, M. Urban, M. Strankowski.Chemical modifications of graphene and their influence on properties of polyurethane composites: a review[J]. The Royal Swedish Academy of Sciences, 2016, 91(10): 1
[7] W. J. Liu, K. Xu, C. S. Wang, et al.Carbon nanofibers reinforced soy polyol-based polyurethane nanocomposites[J]. Journal of Thermal Analysis and Calorimetry, 2016, 91(10): 2459
[8] E. Kuk, Y. M. Ha, J. Yu, et al.Robust and flexible polyurethane composite nanofibers incorporating multi-walled carbon nanotubes produced by solution blow spinning[J]. Macromolecular Materials and Engineering, 2016, 301(4): 364
[9] X. H. Kong, L. Y. Zhao, J. M. Curtis.Polyurethane nanocomposites incorporating biobased polyols and reinforced with a low fraction of cellulose nanocrystals[J]. Carbohydrate Polymers, 2016, 152: 487
[10] L. Li, L. B. Wu, Z. Y. Bu.Graft Copolymerization of Styrene and Acrylonitrile in the Presence of Poly(propylene glycol): Particle Growth[J]. Macromolecular Reaction Engineering, 2012, 6(9-10): 365
[11] Zhou C F.The research progress of polyols modified via polymer-filled technology[J]. Synthetic Technology and Application, 2012, 27(3): 19(周成飞. 聚合物填充改性多元醇合成技术及应用的研究进展[J]. 合成技术及应用, 2012, 27(3): 19)
[12] Sun S F, Xin H B.Preparation and performances research of microcellular polyurethane elastomer for high-speed damping pad[J]. Polyurethane Industry, 2014, 29(5): 33(孙少芳, 辛浩波. 高铁减震垫板微孔聚氨酯弹性体的合成及性能研究[J]. 聚氨酯工业, 2014, 29(5): 33)
[13] Zhong C M, Zhu H, Yu C, et al.Preparation and characterization of high performance polymer polyols[J]. Polymer Bulletin, 2014, 12: 149(仲崇敏, 朱宏, 余成等. 高性能聚合物多元醇的合成与表征[J]. 高分子通报, 2014, 12: 149)
[14] F. Sun, Y. L. Hu, H. G. Du.Synthesis and Characterization of MQ Silicone Resins[J]. Journal of Applied Polymer Science, 2012, 125(5): 3532
[15] X. Q. Xu, C. Wu, B. H. Zhang, et al.Preparation, structure characterization, and thermal performance of phenyl-modified MQ silicone resins[J]. Journal of Applied Polymer Science, 2013, 128(6): 4189
[16] X. Y. Shi, Z. Z. Chen, Y. Q. Yang.Toughening of Poly(L-lactide) with Methyl MQ Silicone Resin[J]. European Polymer Journal, 2014, 50: 243
[17] D. Z. Chen, F. X. Chen, X. Y. Hu.Thermal stability, mechanical and optical properties of novel addition cured PDMS composites with nano-silica sol and MQ silicone resin[J]. Composites Science and Technology, 2015, 117: 307
[18] Sun X W, Zou W, Du Z J.Rheological Properties of Polyurethane Adhesive in Curing Process[J]. Polymer Materials Science And Engineering, 2013, 29(3): 31(孙晓微, 邹威, 杜中杰等. 聚氨酯胶粘剂固化反应对其流变性能的影响[J]. 高分子材料科学与工程, 2013, 29(3): 31)
[19] Zhou C F.Investigation of nano-reinforced poly(urethane - imide) foam[J]. Polymer Bulletin, 2014, 2: 54(周成飞. 纳米增强聚(氨酯–酰亚胺)泡沫的研究[J]. 高分子通报, 2014, 2: 54)
[1] 叶姣凤, 王飞, 左洋, 张钧翔, 罗晓晓, 冯利邦. 兼具高强度、高韧性和自修复性能的环氧树脂改性热可逆聚氨酯[J]. 材料研究学报, 2023, 37(4): 257-263.
[2] 李瀚楼, 焦晓光, 朱欢欢, 赵晓欢, 矫庆泽, 冯彩虹, 赵芸. 支链含氟聚酯的合成和性能[J]. 材料研究学报, 2023, 37(4): 315-320.
[3] 马逸舟, 赵秋莹, 杨路, 裘进浩. 热塑型聚酰亚胺/聚偏氟乙烯全有机复合薄膜的制备及其介电储能[J]. 材料研究学报, 2023, 37(2): 89-94.
[4] 戚云超, 方国东, 周振功, 梁军. 不同针刺工艺的针刺复合材料面内拉伸强度分析[J]. 材料研究学报, 2023, 37(1): 21-28.
[5] 杨琴, 王振, 房春娟, 王若迪, 高大航. 力学性能可控的CMC/AA/CB[8]/BET凝胶的制备及其吸附性[J]. 材料研究学报, 2022, 36(8): 628-634.
[6] 殷洁, 胡云涛, 刘慧, 杨逸霏, 王艺峰. 基于电沉积技术构建聚苯胺/海藻酸膜及电化学性能研究[J]. 材料研究学报, 2022, 36(4): 314-320.
[7] 申延龙, 李北罡. 磁性氨基酸功能化海藻酸铝凝胶聚合物的制备及对偶氮染料的超强吸附[J]. 材料研究学报, 2022, 36(3): 220-230.
[8] 龙庆, 王传洋. 不同碳黑含量PMMA的热降解行为和动力学分析[J]. 材料研究学报, 2022, 36(11): 837-844.
[9] 蒋平, 吴丽华, 吕太勇, José Pérez-Rigueiro, 王安萍. 蜘蛛大壶状腺丝的反复拉伸力学行为和性能[J]. 材料研究学报, 2022, 36(10): 747-759.
[10] 鄢俊, 杨进, 王涛, 徐桂龙, 李朝晖. 有机硅油改性水性酚醛的制备及其性能[J]. 材料研究学报, 2021, 35(9): 651-656.
[11] 张昊, 李帆, 常娜, 王海涛, 程博闻, 王攀磊. 羧酸型接枝淀粉吸附树脂的制备和对染料的去除性能[J]. 材料研究学报, 2021, 35(6): 419-432.
[12] 孙丽颖, 钱建华, 赵永芳. AgNWs-TPU/PVDF柔性薄膜电容传感器的制备和性能[J]. 材料研究学报, 2021, 35(6): 441-448.
[13] 唐开元, 黄洋, 黄湘舟, 葛颖, 李娉婷, 袁凡舒, 张威威, 孙东平. 碳化细菌纤维素的理化性质及其在甲醇电催化中的应用[J]. 材料研究学报, 2021, 35(4): 259-270.
[14] 苏晨文, 张婷玥, 郭丽伟, 李乐, 杨苹, 刘艳秋. 用于模拟细胞外基质的硫醇-烯水凝胶的制备[J]. 材料研究学报, 2021, 35(12): 903-910.
[15] 徐春萍, 陈春悦, 张永航, 龚维, 班大明. 含磷聚合物型阻燃剂(PMP)对乙烯基酯树脂(VER)的阻燃改性[J]. 材料研究学报, 2021, 35(11): 843-849.