Please wait a minute...
材料研究学报  2017, Vol. 31 Issue (7): 495-501    DOI: 10.11901/1005.3093.2017.313
  研究论文 本期目录 | 过刊浏览 |
水不溶性铝源合成金属有机骨架MIL-53(Al)及其对洛克沙胂的吸附
侯书亮1, 卢慧宫1, 顾逸凡1, 马小亮1, 吴一楠1(), 王颖2(), 李风亭1
1 同济大学环境科学与工程学院 污染控制与资源化研究国家重点实验室 上海 200092
2 同济大学化学科学与工程学院 上海市化学品分析、风险评估与控制重点实验室 上海 200092
Conversion of Water-insoluble Aluminum Sources into Metal-organic Framework MIL-53(Al) and its Adsorptive Removal of Roxarsone
Shuliang HOU1, Huigong LU1, Yifan GU1, Xiaoliang MA1, Yinan WU1(), Ying WANG2(), Fengting LI1
1 College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, 200092, China
2 Department of Chemistry, Shanghai Key Lab of Chemical Assessment and Sustainability, Tongji University, 200092, China
引用本文:

侯书亮, 卢慧宫, 顾逸凡, 马小亮, 吴一楠, 王颖, 李风亭. 水不溶性铝源合成金属有机骨架MIL-53(Al)及其对洛克沙胂的吸附[J]. 材料研究学报, 2017, 31(7): 495-501.
Shuliang HOU, Huigong LU, Yifan GU, Xiaoliang MA, Yinan WU, Ying WANG, Fengting LI. Conversion of Water-insoluble Aluminum Sources into Metal-organic Framework MIL-53(Al) and its Adsorptive Removal of Roxarsone[J]. Chinese Journal of Materials Research, 2017, 31(7): 495-501.

全文: PDF(2727 KB)   HTML
摘要: 

以氧化铝、氢氧化铝、勃姆石为水不溶性金属源,用水热法合成了金属有机骨架MIL-53(Al)。使用SEM、XRD、氮气吸附和TGA表征了产物的形貌和结构,并与用传统水溶性硝酸铝合成的MIL-53(Al)对比。结果表明:使用三种水不溶性金属源都能合成典型的金属有机骨架材料MIL-53(Al)。用水热法制备的MIL-53(Al)产物的BET比表面积都在700~1000 m2/g。结果还表明,使用三种水不溶性金属源合成的MIL-53(Al)骨架的柔性(flexibility)与用常规铝硝酸盐合成的MIL-53(Al)不同。使用氧化铝合成的MIL-53(Al)常温下的孔道主要呈现大孔(lp)结构且骨架刚性较强。与使用其他铝源合成的MIL-53(Al)相比,用氧化铝合成的MIL-53(Al)对洛克沙胂有较好的吸附去除效果,吸附过程符合二级动力学模型。

关键词 金属有机骨架MIL-53呼吸效应洛克沙胂吸附    
Abstract

The MIL-53(Al) was prepared by hydrothermal method from water-insoluble aluminum sources: alumina, aluminum hydroxide, boehmite. The products were characterized by SEM, XRD, N2 sorption and TGA, simultaneously compared with MIL-53(Al) prepared from aluminum nitrate. The results show that the water-insoluble aluminum sources can be good candidates for the synthesis of typical MIL-53(Al), BET surface areas of which are about 700-1000 m2/g. It’s also noticed that there is different framework flexibility of synthesized MIL-53(Al) from water-insoluble and soluble aluminum sources. The framework of MIL-53(Al) prepared from alumina mainly shows large-pore structure and less flexibility. The adsorption behavior of roxarsone on MIL-53(Al) was investigated. MIL-53(Al) prepared from alumina shows better adsorptive performance towards roxarsone. The adsorption of MIL-53(Al) from alumina fits well with secondary dynamic mode.

Key wordsmetal-organic frameworks    MIL-53    breathing effect    roxarsone    adsorption
收稿日期: 2016-12-20     
ZTFLH:  TB34  
基金资助:资助项目 国家自然科学基金(51203117, 21305046);中央高校基本科研业务费专项(2014KJ007, 2015KJ001)
作者简介:

作者简介 侯书亮,男,1993年生,硕士生

图1  MIL-53(Al)的晶体结构及其骨架呼吸效应示意图
图2  用四种铝源合成的MIL-53(Al)的XRD谱
图3  用四种铝源合成的MIL-53(Al)的SEM照片
图4  用四种铝源合成的MIL-53(Al)的N2吸附-脱附曲线
Sample SBET / m2g-1 SLangmuir / m2g-1 Vmicro / cm3g-1 VT / cm3g-1
MIL-53(Al)OX
MIL-53(Al)OH
MIL-53(Al)OOH
MIL-53(Al)NO
779
856
770
994
1017
995
886
1111
0.18
0.27
0.24
0.34
0.91
0.54
0.51
0.48
表1  四种铝源合成的MIL-53(Al)材料的多孔性能
图5  四种铝源合成的MIL-53(Al)材料热失重曲线
图6  用四种铝源合成的MIL-53(Al)材料对ROX的吸附动力学曲线
Alumium sources Primary dynamic model Secondary dynamic model Morries-weber model
qe k1 R2 qe k1(10-3) R2 C Kip R2
MIL-53(Al)OX 74.263 0.12 0.969 78.714 2.44 0.998 30.130 3.97 0.664
MIL-53(Al)OH 33.496 0.03 0.860 37.882 1.22 0.937 5.518 2.273 0.961
MIL-53(Al)OOH 31.660 0.03 0.804 35.484 1.35 0.875 5.284 2.146 0.948
MIL-53(Al)NO 3.518 0.09 0.881 3.853 28.8 0.936 1.021 0.225 0.834
表2  四种铝源合成的MIL-53(Al)材料吸附ROX动力学拟合参数
[1] Furukawa H, Cordova K E,O’Keeffe M,et al. The chemistry and applications of metal-organic frameworks[J]. Science, 2013, 341(6149): 1230444.
[2] Li Xiaojuan, He Changfa, Huang Bin, et al.Progress in the applications of metal-organic frameworks in adsorptionremoval of hazardous materials[J]. Chemical Industry and Engineering Progress, 2016, 35(2): 586(李小娟, 何长发, 黄斌, 等. 金属有机骨架材料吸附去除环境污染物的进展[J]. 化工进展, 2016, 35(2): 586)
[3] Loiseau T, Serre C, Huguenard C, et al.A rationale for the large breathing of the porous aluminum terephthalate (MIL-53) upon hydration[J]. Chemistry-A European Journal, 2004, 10(6): 1373
[4] Garbarino J R, Bednar A J, Rutherford D W, et al.Environmental fate of roxarsone in poultry litter. I. Degradation of roxarsone during composting[J]. Environmental Science & Technology, 2003, 37(8): 1509
[5] Stolz J F, Perera E, Kilonzo B, et al.Biotransformation of 3-nitro-4-hydroxybenzene arsonic acid (roxarsone) and release of inorganic arsenic by Clostridium species[J]. Environmental Science & Technology, 2007, 41(3): 818
[6] Bednar A J, Garbarino J R, Ferrer I, et al.Photodegradation of roxarsone in poultry litter leachates[J]. Science of The Total Environment, 2003, 302(1): 237
[7] Xi Gongfang.Study the migration and residue law of typical organic arsenic in the system of soil-vegetable [D].Anhui Normal University, 2014(奚功芳. 典型有机胂在土壤—蔬菜系统中的迁移残留规律研究[D]. 安徽师范大学, 2014)
[8] Hu J, Tong Z, Hu Z, et al.Adsorption of roxarsone from aqueous solution by multi-walled carbon nanotubes[J]. Journal of Colloid and Interface Science, 2012, 377(1): 355
[9] Zheng S, Jiang W, Cai Y, et al.Adsorption and photocatalytic degradation of aromatic organoarsenic compounds in TiO2suspension[J]. Catalysis Today, 2014, 224: 83
[10] Wang Y J, Ji F, Wang W, et al.Removal of roxarsone from aqueous solution by Fe/La-modified montmorillonite[J]. Desalination and Water Treatment, 2015: 1
[11] Yang C X, Liu S S, Wang H F, et al.High-performance liquid chromatographic separation of position isomers using metal-organic framework MIL-53 (Al) as the stationary phase[J]. Analyst, 2012, 137(1): 133
[12] Horcajada P, Serre C, Maurin G, et al.Flexible porous metal-organic frameworks for a controlled drug delivery[J]. Journal of the American Chemical Society, 2008, 130(21): 6774
[13] Zhou M, Wu Y, Qiao J, et al.The removal of bisphenol A from aqueous solutions by MIL-53 (Al) and mesostructured MIL-53 (Al)[J]. Journal of Colloid and Interface Science, 2013, 405: 157
[14] Li J, Wu Y, Li Z, et al.Characteristics of arsenate removal from water by metal-organic frameworks (MOFs)[J]. Water Science and Technology, 2014, 70(8): 1391
[15] Li C, Xiong Z, Zhang J, et al.The strengthening role of the amino group in metal-organic framework MIL-53 (Al) for methylene blue and malachite green dye adsorption[J]. Journal of Chemical & Engineering Data, 2015, 60(11): 3414
[1] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] 余谟鑫, 张书海, 朱博文, 张晨, 王晓婷, 鲍佳敏, 邬翔. N掺杂生物炭的制备及其对Co2+ 的吸附性能[J]. 材料研究学报, 2023, 37(4): 291-300.
[4] 杨琴, 王振, 房春娟, 王若迪, 高大航. 力学性能可控的CMC/AA/CB[8]/BET凝胶的制备及其吸附性[J]. 材料研究学报, 2022, 36(8): 628-634.
[5] 申延龙, 李北罡. 磁性氨基酸功能化海藻酸铝凝胶聚合物的制备及对偶氮染料的超强吸附[J]. 材料研究学报, 2022, 36(3): 220-230.
[6] 余谟鑫, 蒯乐, 王亮, 张晨, 王晓婷, 陈启厚. 吲哚基掺氮分级多孔炭的制备及其对酸性橙74的吸附性能[J]. 材料研究学报, 2021, 35(9): 667-674.
[7] 阙爱珍, 朱桃玉, 郑玉婴. 中空磁性氧化石墨烯的制备及其对亚甲基蓝吸附性能[J]. 材料研究学报, 2021, 35(7): 517-525.
[8] 张昊, 李帆, 常娜, 王海涛, 程博闻, 王攀磊. 羧酸型接枝淀粉吸附树脂的制备和对染料的去除性能[J]. 材料研究学报, 2021, 35(6): 419-432.
[9] 张向阳, 章奇羊, 汤涛, 郑涛, 柳浩, 刘国金, 朱海霖, 朱海峰. 基于MOFs的复合材料制备及其对亚甲基蓝染料的吸附性能[J]. 材料研究学报, 2021, 35(11): 866-872.
[10] 张辰, 韩伟豪, 宫玉梅, 于洋, 曹金城. 中空介孔SiO2的合成及其对Cr的吸附[J]. 材料研究学报, 2021, 35(1): 45-52.
[11] 黄健, 林春香, 陈瑞英, 熊万永, 温小乐, 罗鑫. 离子液体辅助纳米纤维素吸附剂的制备及其吸附性能[J]. 材料研究学报, 2020, 34(9): 674-682.
[12] 孙玥, 李大伟, 魏取福. 金属有机框架材料MIL-53(Al)-F127对双酚A的吸附性能[J]. 材料研究学报, 2020, 34(5): 353-360.
[13] 刘珊珊, 兰艳花, 杨荣杰, 周智明. (氯异丙基)磷酸酯在蒙脱石表面吸附机理的模拟计算[J]. 材料研究学报, 2020, 34(11): 853-860.
[14] 胡秀丽,姚霞喜,张文君,纪网金,穆加成,雍钰雯,王旭红. 不同碳源多孔碳纤维制备及其吸附性能[J]. 材料研究学报, 2019, 33(5): 379-386.
[15] 鲁云华,肖国勇,李琳,董岩,迟海军,胡知之,王同华. 乙酯官能化聚酰亚胺的热致重排及其对CO2的吸附性能[J]. 材料研究学报, 2019, 33(3): 209-217.