Please wait a minute...
材料研究学报  2017, Vol. 31 Issue (3): 219-225    DOI: 10.11901/1005.3093.2016.318
  研究论文 本期目录 | 过刊浏览 |
两种马来酸酐接枝物对膨胀阻燃聚丙烯增韧共混复合体系性能的影响
金静1(),王昊2,舒中俊1,卢林刚3
1 中国人民武装警察部队学院消防工程系 廊坊 065000
2 中国人民武装警察部队学院研究生队 廊坊 065000
3 中国人民武装警察部队学院科研部 廊坊 065000
Effect of Two Maleic Anhydride Grafted Polymers as Modifier on Intumescent Flame Retardancy and Mechanical Property of Polypropylene Based Composites
Jing JIN1(),Hao WANG2,Zhongjun SHU1,Lingang LU3
1 Department of Fire Protection Engineering, Chinese People's Armed Police Forces Academy, Langfang 065000, China
2 Graduates College, Chinese People's Armed Police Forces Academy, Langfang 065000, China
3 Department of Science and Technology, Chinese People's Armed Police Forces Academy, Langfang 065000, China
引用本文:

金静,王昊,舒中俊,卢林刚. 两种马来酸酐接枝物对膨胀阻燃聚丙烯增韧共混复合体系性能的影响[J]. 材料研究学报, 2017, 31(3): 219-225.
Jing JIN, Hao WANG, Zhongjun SHU, Lingang LU. Effect of Two Maleic Anhydride Grafted Polymers as Modifier on Intumescent Flame Retardancy and Mechanical Property of Polypropylene Based Composites[J]. Chinese Journal of Materials Research, 2017, 31(3): 219-225.

全文: PDF(1041 KB)   HTML
摘要: 

用膨胀型阻燃剂(IFR)和乙烯辛烯共聚物(POE)对聚丙烯(iPP)进行阻燃和增韧改性,比较研究了两种典型增容剂聚丙烯接枝马来酸酐(PP-g-MAH)和乙烯辛烯共聚物接枝马来酸酐(POE-g-MAH)对膨胀阻燃增韧共混复合体系阻燃性能以及力学性能的影响。结果表明:IFR可提高聚丙烯共混物的燃烧性能,但是明显降低材料的力学性能,而增容剂的加入可同时提高复合材料的燃烧性能和力学性能。PP-g-MAH使IFR的分散更均匀,添加1%(质量分数,下同)的PP-g-MAH使复合材料的平均热释放速率、热释放速率峰值、比消光面积平均值以及烟释放总量比未添加增容剂的阻燃材料分别下降24%、30%、56%和46%;而POE-g-MAH能使复合材料形成包覆结构,使其冲击强度明显提高,加入5%的POE-g-MAH可使复合材料冲击强度提高93%。

关键词 复合材料阻燃性能与力学性能共混复合增容剂    
Abstract

To improve the flame retardancy and mechanical properties of iso-polypropylene (iPP), composites of iPP/poly(ethylene-co-octene)/intumescent flame retardant (iPP/POE/IFR),were prepared by melt-extrusion process with a twin-screw extruder. And then their flame retardancy and mechanical properties were investigated systematically. Particularly, the effect of two typical compatibilizers, i.e. maleic anhydride grafted polymers of POE-g-MAH and PP-g-MAH, on the properties of the composites was examined in detail. The results show that IFR is efficient for improving the flame retardancy of the iPP blend, while harmful to their mechanical properties. By comparing with the composite without compatibilizer, the addition of 1%(mass fraction) compatibilizer can improve significantly the flame retardency and mechanical properties for the composites. Furthermore, pp-g-MAH is more effective in improving the flame retardency, while POE-g-MAH is preferable to enhance the mechanical properties. The optimized comprehensive properties are resulted from the fine dispersion of the intumescent flame retardant.

Key wordscomposite    flame retardant and mechanical properties    blending and composites    compatibilizer
收稿日期: 2016-06-07     
基金资助:国家自然科学基金(21472241)、北京分子科学国家实验室开放课题(2013015)及河北省自然科学基金(B2015507044)
Sample Mass fraction/% LOI
/%
Tensile strength
/MPa
Impact strength
/kJm-2
iPP POE IFR POE-g-MAH PP-g-MAH
iPP 100 0 0 0 0 17.8 39.1 2.0
iPP/POE 80 20 0 0 0 20.0 34.8 18.5
IFR-0 80 20 20 0 0 27.0 24.5 4.6
IFR-c1 80 19 20 1 0 28.8 27.5 6.6
IFR-c5 80 15 20 5 0 29.0 28.5 8.9
IFR-p1 79 20 20 0 1 28.8 25.1 5.1
IFR-p5 75 20 20 0 5 28.8 26.8 5.4
表1  iPP/POE/IFR复合材料配比、燃烧性能和力学性能
Sample TTI
(s)
PHRR
(kW/m2)
MHRR
(kW/m2)
MMLR
(g/s)
av-EHC
(MJ/kg)
iPP 69 643.1 345.2 0.07 39.4
iPP/POE 76 663.8 353.9 0.07 40.2
IFR-0 70 344.7 200.0 0.04 37.8
IFR-c1 72 316.0 177.4 0.03 40.2
IFR-c5 73 390.1 210.7 0.04 42.4
IFR-p1 58 240.6 152.9 0.03 38.5
IFR-p5 59 283.0 177.8 0.03 37.5
表2  iPP/POE/IFR/OMMT复合材料在35 kW/m2辐射通量下的锥形量热实验数据
图1  iPP/POE/IFR复合材料在35 kW/m2辐射功率下的锥形量热试验热释放速率曲线
图2  锥型量热实验测试后的膨胀炭层形貌
图3  锥型量热实验测试后的膨胀炭层微观形貌
Sample TSR
(m2/m2)
av-COY
(kg/kg)
av-CO2Y
(kg/kg)
av-SEA
(m2/kg)
p-COY
(kg/kg)
p-CO2Y
(kg/kg)
p-SEA
(m2/kg)
iPP 1965.7 0.03 2.76 442.3 0.12 11.2 4087.7
iPP/POE 1709.2 0.04 2.83 471.5 0.12 11.5 4257.3
IFR-0 2348.1 0.04 2.45 551.9 0.11 5.7 3934.6
IFR-c1 1861.6 0.03 2.18 380.7 0.09 5.2 3500.0
IFR-c5 2853.4 0.04 2.5 676.5 0.12 6.3 4285.1
IFR-p1 1264.7 0.04 2.22 244.6 0.08 4.3 1429.2
IFR-p5 2044.2 0.04 2.4 486.8 0.10 4.6 2582.0
表3  iPP/POE/IFR复合材料在35 kW/m2辐射功率下的锥形量热试验烟气数据
图4  复合材料冲击断面的微观形貌
[1] Wang H, Jin J.Research progress of intumescent flame retardant polypropylene and its mechanical modification[J]. Polymer Bulletin, 2015, 7: 17
[1] (王昊, 金静, 膨胀阻燃聚丙烯及其协同力学改性的研究进展[J]. 高分子通报, 2015, 7: 17)
[2] Dasari A, Yu Z Z, Cai G P, et al.Recent developments in the fire retardancy of polymeric materials[J]. Progress in Polymer Science, 2015, 38(9): 1357
[3] Camino G, Costa L, Martinasso G.Intumescent fire-retardant systems[J]. Polymer Degradation & Stability, 1989, 23(4): 359
[4] Enescu D, Frache A, Lavaselli M, et al.Novel phosphorous-nitrogen intumescent flame retardant system its effects on flame retardancy and thermal properties of polypropylene[J]. Polymer Degradation & Stability, 2013, 98(1): 297
[5] Lai X J, Qiu J D, Zeng X R, et al.Progress in phosphorus-nitrogen macromolecular intumescent flame retardants and their application in polypropylene[J]. Polymer Materials Science & Engineering, 2015, 9: 184
[5] (赖学军, 邱杰东, 曾幸荣等. 磷-氮大分子膨胀型阻燃剂及其阻燃聚丙烯的研究进展[J]. 高分子材料科学与工程, 2015, 9: 184)
[6] Galli P, Vecellio G.Technology: driving force behind innovation and growth of polyolefins[J]. Progress in Polymer Science, 2011, 26(8):1287
[7] Tang Y, Hu Y, Li B G, et al.Polypropylene/montmorillonite nanocomposites and intumescent, flame-retardant montmorillonite synergism in polypropylene nanocomposites[J]. Journal of Polymer Science Part A Polymer Chemistry, 2004, 42(23): 6163
[8] Tao S P, Lu Z Q, Xiao P, Research on the high performance of halogen free flame retardant PP[J]. China Plastics Industry, 2012, 40(3): 118
[8] (陶四平, 陆湛泉, 肖鹏. 无卤阻燃聚丙烯高性能化技术研究[J]. 塑料工业, 2012, 40(3): 118)
[9] Mi L, Wang N, Zhang J, et al.Synergistic effect of OMMT/mesoporous MCM-41 on intumescent flame retardant polypropylene[J]. Chinese Journal of Materials Research, 2012, 26(5): 456
[9] (米龙, 王娜, 张静等. 有机蒙脱土/介孔分子筛协同膨胀型阻燃剂阻燃聚丙烯的性能[J]. 材料研究学报, 2012, 26(5): 456
[10] Ren Q, Wan C, Zhang Y, et al.An investigation into synergistic effects of rare earth oxides on intumescent flame retardancy of polypropylene/poly (octylene-co-ethylene) blends[J]. Polymers for Advanced Technologies, 2011, 22(10): 1414
[11] Qiao Z, Tai Q, Song L, et al.Synergistic effects of cerium phosphate and intumescent flame retardant on EPDM/PP composites[J]. Polymers for Advanced Technologies, 2011, 22(12): 2602
[12] Su X Q, Qiao J L, Hua Y Q, et al.Study on the relationship between structure and properties for ternary PP nanocomposites with special “salami” like structure[J]. Acta Polymerica Sinica, 2005, 1: 142
[12] (苏新清, 乔金樑, 华幼卿等. 具有包藏结构的三元聚丙烯纳米复合材料结构与性能关系的研究[J]. 高分子学报, 2005, 1: 142
[1] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] 刘瑞峰, 仙运昌, 赵瑞, 周印梅, 王文先. 钛合金/不锈钢复合板的放电等离子烧结技术制备及其性能[J]. 材料研究学报, 2023, 37(8): 581-589.
[3] 季雨辰, 刘树和, 张天宇, 查成. MXene在锂硫电池中应用的研究进展[J]. 材料研究学报, 2023, 37(7): 481-494.
[4] 王伟, 解泽磊, 屈怡珅, 常文娟, 彭怡晴, 金杰, 王快社. Graphene/SiO2 纳米复合材料作为水基润滑添加剂的摩擦学性能[J]. 材料研究学报, 2023, 37(7): 543-553.
[5] 张藤心, 王函, 郝亚斌, 张建岗, 孙新阳, 曾尤. 基于界面氢键结构的石墨烯/聚合物复合材料的阻尼性能[J]. 材料研究学报, 2023, 37(6): 401-407.
[6] 邵萌萌, 陈招科, 熊翔, 曾毅, 王铎, 王徐辉. C/C-ZrC-SiC复合材料的Si2+ 离子辐照行为[J]. 材料研究学报, 2023, 37(6): 472-480.
[7] 张锦中, 刘晓云, 杨健茂, 周剑锋, 查刘生. 温度响应性双面纳米纤维的制备和性能[J]. 材料研究学报, 2023, 37(4): 248-256.
[8] 王刚, 杜雷雷, 缪自强, 钱凯成, 杜向博文, 邓泽婷, 李仁宏. 聚多巴胺改性碳纤维增强尼龙6复合材料的界面性能[J]. 材料研究学报, 2023, 37(3): 203-210.
[9] 林师峰, 徐东安, 庄艳歆, 张海峰, 朱正旺. TiZr基非晶/TC21双层复合材料的制备和力学性能[J]. 材料研究学报, 2023, 37(3): 193-202.
[10] 苗琪, 左孝青, 周芸, 王应武, 郭路, 王坦, 黄蓓. 304不锈钢纤维/ZL104铝合金复合泡沫的孔结构、力学、吸声性能及其机理[J]. 材料研究学报, 2023, 37(3): 175-183.
[11] 张开银, 王秋玲, 向军. FeCo/SnO2 复合纳米纤维的制备及其吸波性能[J]. 材料研究学报, 2023, 37(2): 102-110.
[12] 周聪, 昝宇宁, 王东, 王全兆, 肖伯律, 马宗义. (Al11La3+Al2O3)/Al复合材料的高温性能及其强化机制[J]. 材料研究学报, 2023, 37(2): 81-88.
[13] 罗昱, 陈秋云, 薛丽红, 张五星, 严有为. 钠离子电池双层碳包覆Na3V2(PO4)3 正极材料的超声辅助溶液燃烧合成及其电化学性能[J]. 材料研究学报, 2023, 37(2): 129-135.
[14] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[15] 谢东航, 潘冉, 朱士泽, 王东, 刘振宇, 昝宇宁, 肖伯律, 马宗义. 增强颗粒尺寸对B4C/Al-Zn-Mg-Cu复合材料微观组织及力学性能的影响[J]. 材料研究学报, 2023, 37(10): 731-738.