Please wait a minute...
材料研究学报  2017, Vol. 31 Issue (3): 211-218    DOI: 10.11901/1005.3093.2016.240
  研究论文 本期目录 | 过刊浏览 |
镁合金表面有机/无机杂化涂层的性能
高正源1,3(),曹献龙2,刘浪4,方轶琉1,胡琳盛1
1 重庆交通大学机电与车辆工程学院 重庆 400074
2 重庆科技学院冶金与材料工程学院 重庆 401331
3 重庆市计量质量检测研究院 重庆 401121
4 重庆交通大学土木工程学院 重庆 400074
Properties of Organic/Inorganic Hybrid Coatings Formed on Magnesium Alloy Surface
Zhengyuan GAO1,3(),Xianlong CAO2,Lang LIU4,Yiliu FANG1,Linsheng HU1
1 School of Mechatronics and Automotive Engineering, Chongqing Jiaotong University, Chongqing 400074, China
2 School of Metallurgy and Materials Engineering, Chongqing University of Science and Technology, Chongqing 401331, China
3 Chongqing Academy of Metrology and Quality Inspection, Chongqing, 401121, China
4 School of Civil Engineering, Chongqing Jiaotong University, Chongqing 400074, China
引用本文:

高正源,曹献龙,刘浪,方轶琉,胡琳盛. 镁合金表面有机/无机杂化涂层的性能[J]. 材料研究学报, 2017, 31(3): 211-218.
Zhengyuan GAO, Xianlong CAO, Lang LIU, Yiliu FANG, Linsheng HU. Properties of Organic/Inorganic Hybrid Coatings Formed on Magnesium Alloy Surface[J]. Chinese Journal of Materials Research, 2017, 31(3): 211-218.

全文: PDF(1215 KB)   HTML
摘要: 

在AZ31镁合金表面制备有机/无机杂化涂层,用扫描电子显微镜、扫描探针显微镜、电化学工作站、光学显微镜、涂层测厚仪等手段对杂化涂层的表面形貌、耐蚀性、附着力及厚度进行表征,研究了有机/无机杂化溶胶-凝胶体系的pH值对涂层性能的影响。结果表明:pH值对镁合金表面的杂化涂层的性能有显著的影响。当pH值为3~3.5时,可在镁合金表面制备出高平整度且少缺陷的涂层,厚度约为22 μm;当pH值为2.2~2.8时,涂层变薄、表面起伏较大且有较多的孔洞。当pH=3时杂化涂层具有良好的附着力和最正的腐蚀电位,且腐蚀电流密度最小(约为7.34×10-5 A/cm2),相对于空白镁合金试样的缓蚀效率约为99.7%。

关键词 材料失效与保护镁合金pH值溶胶-凝胶法耐蚀性    
Abstract

Organic/inorganic hybrid coatings were prepared on AZ31 magnesium alloy, which then was characterized by means of scanning electron microscope, scanning probe microscope, electrochemical analyzer, optical microscope and coatings thickness tester in terms of surface morphology, corrosion resistance, adhesion and thickness. While the influence of pH value of organic/inorganic hybrid sol-gel on the properties of organic/inorganic hybrid coating was also investigated. The results show that pH values of organic/inorganic hybrid sol-gel have important effect on the properties of the organic/inorganic hybrid coatings formed on AZ31 magnesium alloy: When pH value is in the range 3~3.5, a smooth and few defects hybrid coating of the thickness of 22 μm can be obtained; When pH value is in the range 2.2~2.8, the hybrid coating became thin and coarse with some big pores; When pH value equals to 3.0, the hybrid coating has good adhesion, highest corrosion potential and minimum corrosion current density (~7.34×10-5 A/cm2). Corrosion inhibition efficiency of the hybrid coating prepared by sol-gel with pH 3.0 could reach ~ 99.7% compared to the blank AZ31 magnesium alloy.

Key wordsmaterials failure and protection    magnesium alloys    pH value    sol-gel method    corrosion resistance
收稿日期: 2016-05-03     
基金资助:重庆市质量技术监督局科研计划资助项目(CQZJKY2013001、CQZJKY2014017);国家质量监督检验检疫总局科技计划资助项目(2014QK263);重庆市南川区科技计划项目(CX201407);重庆市重点产业共性关键技术创新专项(cstc2016zdcy50002);重庆市基础与前沿研究计划项目(CSTC2015JCYJBX0140、CSTC2015JCYJA50003);重庆市教委科学技术研究项目(KJ1401314、KJ1401310)
图1  实验方案
Sample
No.
HAc
(ml)
KH560
(ml)
TEOS
(ml)
H2O
(ml)
EtOH
(ml)
pH
Sp1 0.3 31.05 10.05 12.15 12.23 3.5
Sp2 0.4 31.05 10.05 12.15 12.23 3.3
Sp3 0.5 31.05 10.05 12.15 12.23 3.0
Sp4 0.6 31.05 10.05 12.15 12.23 2.8
Sp5 0.7 31.05 10.05 12.15 12.23 2.5
Sp6 0.8 31.05 10.05 12.15 12.23 2.2
表1  不同冰醋酸添加量下的杂化溶胶配方组成及pH值
图2  不同pH值下AZ31镁合金表面制备的杂化涂层的SEM图像
图3  pH值为2.2时在AZ31镁合金表面制备的杂化涂层SEM图像
Sample (No.) Test point 1 (μm) Test point 2 (μm) Test point 3 (μm) Average value (μm)
Sp1 14.9 15.3 16.1 15.4
Sp2 20.2 20.4 21.2 20.6
Sp3 21.9 22.1 22.3 22.1
Sp4 20.0 20.6 21.3 20.6
Sp5 19.4 19.9 20.8 20.0
Sp6 16.6 16.8 17.1 16.8
表2  不同pH值下在镁合金表面制备的杂化涂层的厚度
图4  不同pH值时AZ31镁合金表面制备的杂化涂层上划痕光学显微镜图像
图5  镁合金表面上不同pH值下制备的杂化涂层的极化曲线
Sample
No.
Icorr
/Acm-2
Ecorr
/V
Inhibition efficiency/%
Sp1 7.93×10-4 -1.385 96.9
Sp2 3.12×10-4 -1.361 98.8
Sp3 7.34×10-5 -1.346 99.7
Sp4 2.81×10-3 -1.419 89.1
Sp5 3.38×10-3 -1.427 86.8
Sp6 1.96×10-2 -1.603 23.7
Blank 2.57×10-2 -1.756
表3  不同pH值下制备的杂化涂层极化曲线的电化学参数结果和涂层缓蚀效率
Sample No. Open circuit potential/V
Sp1 -1.537
Sp2 -1.534
Sp3 -1.527
Sp4 -1.545
Sp5 -1.547
Sp6 -1.552
blank -1.710
表4  AZ31镁合金表面不同pH值下制备的杂化涂层的开路电位
图6  AZ31镁合金表面不同pH值下制备的杂化涂层的开路电位-时间曲线
[1] Wei Y H, Xu B S.Theory and practice of magnesium alloy corrosion protection [M]. Beijing: Metallurgical Industry Press, 2007: 4
[1] (卫英慧,许并社. 镁合金腐蚀防护的理论与实践[M]. 北京: 冶金工业出版社, 2007: 4)
[2] Xue J F.Corrosion Prevention Technology of Magnesium Alloy[M]. Beijing: Chemical Industrial Press, 2010: 10
[2] (薛俊峰. 镁合金防腐蚀技术[M]. 北京: 化学工业出版社, 2010: 10)
[3] Yan H.New Technology of Metal Surface Treatment [M]. Beijing: Metallurgical Industry Press, 1996: 10
[3] (阎洪. 金属表面处理新技术[M]. 北京: 冶金工业出版社, 1996: 10)
[4] Gao Z Y, Pan F S.Development of fabrication processes and adhesion measurement of functional surface coating on magnesium alloys[J]. Gongneng Cailiao/journal of Functional Materials, 2012, 43(14): 553
[4] (高正源, 潘复生. 镁合金表面功能涂层制备与界面表征技术的研究进展[J]. 功能材料, 2012(12): 1817)
[5] Gao Z, Pan F.Investigation on microstructure and mechanical properties of nano-ceramic coating on AZ31 magnesium alloys[J]. Journal of Chongqing University, 2012, 35(7): 67
[5] (高正源, 潘复生. AZ31镁合金表面纳米陶瓷涂层的组织与力学性能分析[M]. 重庆大学学报, 2012, 35(7): 67)
[6] Gao Z Y, Pan F S, Tang A T, et al.Investigation on corrosion and wear resistance of AZ31 magnesium alloy by single layer nanocrystalline Al2O3 thin film[J]. Journal of Functional Materials, 2013, 44(8): 1069
[6] (高正源, 潘复生, 汤爱涛等. AZ31 镁合金表面纳米 Al2O3 涂层的耐蚀耐磨性能研究[J]. 功能材料, 2013, 44(8): 1069)
[7] Song G L.Corrosion and Protection of Magnesium Alloy [M]. Beijing: Chemical Industrial Press, 2006: 6
[7] (宋光玲. 镁合金腐蚀与防护[M]. 北京: 化学工业出版社, 2006: 6)
[8] Wu B R.Organic-inorganic Hybrid Material and Its Application [M]. Beijing: Chemical Industrial Press, 2005: 5
[8] (吴壁耀, 张超灿. 有机-无机杂化材料及其应用[M]. 北京: 化学工业出版社, 2005: 5)
[9] Guo X H.Effect of Sol Compositions on Corrosion Protection of SNAP Film Coated on Magnesium Alloy[J]. Chinese Journal of Inorganic Chemistry, 2009, 25(7): 1254
[9] (郭兴华, 安茂忠, 杨培霞, 李海先. SNAP溶胶组成对镁合金涂层耐蚀性的影响[J]. 无机化学学报, 2009, 25(7): 1254)
[10] Wang H L.Study on organic inorganic hybrid materials of organic polymer/SiO2[M]. Hefei: Hefei Industry University Press, 2007: 10
[10] (王华林. 有机聚合物/SiO2有机-无机杂化材料的研究[M]. 合肥:合肥工业大学出版社, 2007: 10)
[11] Zheng W T.Thin film materials and thin film technology [M]. Beijing: Chemical Industrial Press, 2007: 1
[11] (郑伟涛. 薄膜材料与薄膜技术[M]. 北京: 化学工业出版社, 2007: 1)
[12] F. Zanotto, V. Grassi, A. Frignani, F. Zucchi.Protection of the AZ31 magnesium alloy with cerium modified silane coatings[J]. Materials Chemistry and Physics, 2011, 129(1-2): 1
[13] Lamaka S V, Montemor M F, Galio A F, et al.Novel hybrid sol-gel coatings for corrosion protection of AZ31B magnesium alloy[J]. Electrochimica Acta, 2008, 53(14): 4773
[14] Xu B S.Nano-surface-engineering [M]. Beijing: Chemical Industrial Press, 2003: 9
[14] (徐滨士. 纳米表面工程[M]. 北京: 化学工业出版社, 2003: 9)
[15] Wang X H, Sun Y M, Liu S H, et al.Preparation and corrosion characterization of organic-inorganic hybrid coatigns[J]. Corrosion Science & Protection Technology, 2006, 18(4): 292
[15] (王秀华, 孙益民, 刘守华等. 有机-无机杂化涂层制备及耐腐蚀性能研究[J]. 腐蚀科学与防护技术, 2006, 18(4): 292)
[16] Zhou S H.Preparation of PDMS/SiO2 hybrid material and its application in the protection of ancient ivory [D]. Chengdu University of Technology, 2008: 3
[16] (周述慧. PDMS/SiO2杂化材料的制备及其在古象牙保护中的应用[D]. 成都理工大学, 2008: 3)
[17] Huang C Z, Ai X, Hou Z G, et al.Status quo in the research and application of sol-gel method[J]. Materials Review, 1997, 11(3): 8
[17] (黄传真, 艾兴, 侯兴刚等. 溶胶-凝胶法的研究和应用现状[J]. 材料导报, 1997, 11(3): 8)
[18] Bing L. Progress of Organic/Inorganic Hybrid Optical-Functional Materials Prepared by the Sol-Gel Method[J]. Progress in Chemistry, 2005(1): 85
[18] (刘冰,强亮生. 溶胶-凝胶法制备光学杂化功能材料[J]. 化学进展, 2005, 17(1): 85)
[19] Huang J F.The principle and technology of Sol-Gel [M]. Beijing: Chemical Industrial Press, 2005: 9
[19] (黄剑锋. 溶胶-凝胶原理与技术[M]. 北京: 化学工业出版社, 2005: 9)
[20] Gan G.Films Via Sol Gel Technique and it′s Applications[J]. Journal of Kunming University Ofence & Technology, 1997, 22(1): 143
[20] (甘友国, 郭玉忠, 苏云生. 溶胶-凝胶法薄膜制备工艺及其应用[J]. 昆明理工大学学报, 1997, 22(1): 143)
[21] Lin B, Liu H, Zeng W, et al.Study on Surface Structure and Corrosion Resistance of AZ91 Alloy After Injecting Ion[J]. Hot Working Technology, 2010, 39(12): 117
[21] (林波, 刘洪喜, 曾维华等. 离子注入AZ91镁合金表面结构和耐蚀性能研究[J]. 热加工工艺, 2010, 39(12): 117)
[1] 李鹏宇, 刘子童, 亢淑梅, 陈姗姗. 等离子处理对医用镁合金表面聚合物防护涂层的影响[J]. 材料研究学报, 2023, 37(4): 271-280.
[2] 廖鸿宇, 贾咏馨, 苏睿明, 李广龙, 曲迎东, 李荣德. 回归时间对2024铝合金的组织和耐蚀性能的影响[J]. 材料研究学报, 2023, 37(4): 264-270.
[3] 高巍, 刘江南, 魏敬鹏, 要玉宏, 杨巍. TC4钛合金表面氧化亚铜掺杂微弧氧化层的结构和性能[J]. 材料研究学报, 2022, 36(6): 409-415.
[4] 杨留洋, 谭卓伟, 李同跃, 张大磊, 邢少华, 鞠虹. 利用WBEEIS测试技术对管道缺陷区动态冲刷腐蚀行为的研究[J]. 材料研究学报, 2022, 36(5): 381-391.
[5] 陈铮, 杨芳, 王成, 杜瑶, 卢壹梁, 朱圣龙, 王福会. 惰性无机填料比例和颗粒尺寸对纳米Al/Al2O3 改性有机硅涂料抗高温氧化行为的影响[J]. 材料研究学报, 2022, 36(4): 271-277.
[6] 李玉峰, 张念飞, 刘丽爽, 赵甜甜, 高文博, 高晓辉. 含磷石墨烯的制备及复合涂层的耐蚀性能[J]. 材料研究学报, 2022, 36(12): 933-944.
[7] 刘洋, 康锐, 冯小辉, 罗天骄, 李应举, 冯建广, 曹天慧, 黄秋燕, 杨院生. Mg-Al-Ca-Mn-Zn变形镁合金的组织和力学性能[J]. 材料研究学报, 2022, 36(1): 13-20.
[8] 陈艺文, 王成, 娄霞, 李定骏, 周科, 陈明辉, 王群昌, 朱圣龙, 王福会. 无机复合涂层对CB2铁素体耐热钢在650℃水蒸气中的防护[J]. 材料研究学报, 2021, 35(9): 675-681.
[9] 唐荣茂, 刘光明, 刘永强, 师超, 张帮彦, 田继红, 甘鸿禹. 用电化学噪声技术研究Q235钢在含氯盐模拟混凝土孔隙液中的腐蚀行为[J]. 材料研究学报, 2021, 35(7): 526-534.
[10] 顾佳卿, 唐伟能, 徐世伟. Mg-0.4Zn镁合金挤压板拉伸变形组织的演变[J]. 材料研究学报, 2021, 35(7): 553-560.
[11] 郝欣欣, 席通, 张宏镇, 杨春光, 杨柯. 淬火温度对含铜5Cr15MoV马氏体不锈钢性能的影响[J]. 材料研究学报, 2021, 35(12): 933-941.
[12] 张大磊, 魏恩泽, 荆赫, 杨留洋, 豆肖辉, 李同跃. 超级铁素体不锈钢表面超疏水结构的制备及其耐腐蚀性能[J]. 材料研究学报, 2021, 35(1): 7-16.
[13] 王冠一, 车欣, 张浩宇, 陈立佳. Al-5.4Zn-2.6Mg-1.4Cu合金板材的低周疲劳行为[J]. 材料研究学报, 2020, 34(9): 697-704.
[14] 黄安然, 张伟, 王学林, 尚成嘉, 范佳杰. 铁素体不锈钢在高温尿素环境中的腐蚀行为研究[J]. 材料研究学报, 2020, 34(9): 712-720.
[15] 公维炜, 杨丙坤, 陈云, 郝文魁, 王晓芳, 陈浩. 扫描电化学显微镜原位观察碳钢涂层缺陷处的交流腐蚀行为[J]. 材料研究学报, 2020, 34(7): 545-553.