Please wait a minute...
材料研究学报  2017, Vol. 31 Issue (3): 195-202    DOI: 10.11901/1005.3093.2016.346
  研究论文 本期目录 | 过刊浏览 |
Ni-Co/WC+G复合熔覆层的组织与摩擦磨损性能
王旭升1,杨贵荣1(),宋文明1,2,李健3,马颖1,郝远1
1 兰州理工大学 省部共建有色金属先进加工与再利用国家重点实验室 兰州 730050
2 甘肃蓝科高新石化装备股份有限公司 兰州 730070
3 武汉材料保护研究所 武汉 430030
Microstructure and Wear Resistance of Composite Coatings Ni-Co/WC+G
Xusheng WANG1,Guirong YANG1(),Wenming SONG1,2,Jian LI3,Ying MA1,Yuan HAO1
1 State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Lanzhou University of Technology, Lanzhou 730050, China
2 Lanpec Technologies Limited, Lanzhou 730070, China
3 Wuhan Research Institute of Materials Protection, Wuhan 430030, China
引用本文:

王旭升,杨贵荣,宋文明,李健,马颖,郝远. Ni-Co/WC+G复合熔覆层的组织与摩擦磨损性能[J]. 材料研究学报, 2017, 31(3): 195-202.
Xusheng WANG, Guirong YANG, Wenming SONG, Jian LI, Ying MA, Yuan HAO. Microstructure and Wear Resistance of Composite Coatings Ni-Co/WC+G[J]. Chinese Journal of Materials Research, 2017, 31(3): 195-202.

全文: PDF(1237 KB)   HTML
摘要: 

通过真空熔覆技术在ZG45表面制备了Ni-Co/WC+G复合熔覆层,观察并分析了复合熔覆层的显微组织形貌和物相组成,通过摩擦磨损试验研究了石墨含量对复合熔覆层摩擦磨损性能的影响。结果表明,呈三维网状织构形貌的复合熔覆层材料内部由于石墨的加入形成许多细小的“石墨孔洞”,这些 “石墨孔洞”在摩擦过程中可以作为贮存的润滑介质,增强复合材料的摩擦学性能。随着石墨含量的增加复合熔覆层的摩擦系数、磨损率和GCr15钢对磨盘的磨损量逐渐降低,石墨含量为6%时最小; 石墨含量为8%时,对磨盘的磨损量又突然上升,增幅达70%。

关键词 复合材料织构真空熔覆镍钴合金石墨摩擦磨损性能    
Abstract

Composite coatings of Ni-Co/WC+G were fabricated on steel ZG45 by vacuum cladding. Their microstructure and phase constituents were characterized by SEM and XRD. The effect of graphite content on the wear behavior was investigated by experiment of tribology. The results show that the composite coatings present 3D texture-like structure with many “micro-pores” due to the addition of graphite,which could act as lubricant and thus improve tribological property of the composite coating. The friction coefficient, wear rate and wear loss of the GCr15 plate decreased with the increasing graphite content until the graphite content reaches 6%. The wear loss of the GCr15 plate with 8% graphite abruptly increased by 70% compared with the one with 6% graphite.

Key wordscomposite    texture    vacuum cladding    nickel-cobalt    graphite    friction-wear property
收稿日期: 2016-06-21     
基金资助:国家自然科学基金(51205178)和甘肃省自然科学基金(1208RJZA189)
图1  销盘式摩擦磨损试验示意图
图2  复合熔覆层的XRD图谱
图3  Ni-Co/WC+G复合熔覆层的显微组织形貌
图4  不同石墨含量熔覆层的摩擦系数和磨损率
图5  不同石墨含量熔覆层的磨盘磨损量
图6  Ni-Co/WC+G复合熔覆层摩擦磨损表面SEM形貌
C O Fe Cr Co Ni W
Points L 6.6 43.9 30.9 5.1 2.1 5.3 6.2
H 26.3 6.6 52.6 6.7 2.3 4.1 1.4
M 68.2 7.5 12.7 4.3 3.1 4.2 -
表1  熔覆层磨损表面不同微区EDS元素分析
图7  6%G复合熔覆层表面C分布
图8  不同石墨含量的复合熔覆层宏观硬度
[1] Otsubo F, Era H, Kishitake K.Structure and phases in nickel-base self-fluxing alloy coating containing high chromium and boron[J].J. Thermal Spray Technol., 2000, 9: 107
[2] Angelastro A, Campanelli S L, Casalino G, et al.Optimization of Ni-based WC/Co/Cr composite coatings produced by multilayer laser cladding[J]. Adv. Mater. Sci. Eng., 2013, 2013: 615464
[3] Xu J S, Zhang X C, Xuan F Z, et al.Microstructure and sliding wear resistance of laser cladded WC/Ni composite coatings with different contents of WC particle[J]. J. Mater. Eng. Perform., 2012, 21: 1904
[4] Sari N Y, Yilmaz M.Improvement of wear resistance of wire drawing rolls with Cr-Ni-B-Si+WC thermal spraying powders[J]. Surf. Coat. Technol., 2008, 202: 3136
[5] Qin R Y, Zhang X J, Guo S Q, et al.Laser cladding of high Co-Ni secondary hardening steel on 18Cr2Ni4WA steel[J]. Surf. Coat. Technol., 2016, 285: 242
[6] Li F, Liu C S, Chen S Y, et al.Laser cladding Ni-Co duplex coating on copper substrate[J]. Opt. Lasers Eng., 2010, 48: 792
[7] Jing Q F, Tan Y F, Tang J, et al. Microstructure and mechanical properties of cobalt alloy coating deposited by electro-spark[J]. Adv. Mater. Res., 2014, 881-883: 1400
[8] Zhang X F, Zhang X L, Wang A H, et al.Microstructure and properties of HVOF Sprayed Ni-based submicron WS2/CaF2 self-lubricating composite coating[J].Trans. Nonferrous Metals Soc. China, 2009, 19: 85
[9] Yin Y G, Liu J W, Zheng Z X, et al.Effect of graphite on the friction and wear properties of Cu alloy-matrix self-lubricating composites at elevated temperature[J]. Tribology, 2005, 25: 216
[9] (尹延国, 刘君武, 郑治祥等. 石墨对铜基自润滑材料高温摩擦磨损性能的影响[J]. 摩擦学学报, 2005, 25: 216)
[10] Yang G R, Huang C P, Song W M, et al. The effect of graphite content on the wear behavior of Ni/WC/G composite coating [J]. Adv. Mater. Res., 2015, 1120-1121: 702
[11] Zhao L, Cai Z B, Zhang Z C, et al.Tribological properties of graphene as effective lubricant additive in oil on textured bronze surface[J]. Chin. J. Mater. Res., 2016, 30(1): 57
[11] (赵磊, 蔡振兵, 张祖川等. 石墨烯作为润滑油添加剂在青铜织构表面的摩擦磨损行为[J]. 材料研究学报, 2016, 30(1): 57)
[12] Hu T C, Ding Q, Hu L T.The effect of laser texturing of GCr15 steel surfaces on their tribological properties[J]. Tribology, 2011, 31: 447
[12] (胡天昌, 丁奇, 胡丽天. 激光表面织构化对GCr15钢摩擦磨损性能的影响[J]. 摩擦学学报, 2011, 31: 447)
[13] Lu J B, Meng P, Fan P,et al.Nucleation and growth of Cr7C3 at interface of brazed diamond with Ni-Cr alloy under protective atmosphere[J]. Trans. China Weld. Institut., 2012, 33(9): 65
[13] (卢金斌, 孟普, 樊平等. Ni-Cr合金保护气氛钎焊金刚石界面Cr7C3的形核与长大[J]. 焊接学报, 2012, 33(9): 65)
[14] Yang G R, Huang C P, Song W M, et al.Microstructure characteristics of Ni/WC composite cladding coatings[J]. Int. J, Miner., Metall. Mater., 2016, 23: 184
[15] Zhang Y F, Yang G R, Huang C P, et al.Wear resistance of a texture-like nickel-based composite coating[J]. Chin. J. Mater. Res.,2015, 29(9): 679
[15] (张玉福, 杨贵荣, 黄超鹏等. 类表面织构化镍基复合涂层的摩擦磨损性能[J]. 材料研究学报, 2015, 29(9): 679)
[1] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[3] 刘瑞峰, 仙运昌, 赵瑞, 周印梅, 王文先. 钛合金/不锈钢复合板的放电等离子烧结技术制备及其性能[J]. 材料研究学报, 2023, 37(8): 581-589.
[4] 季雨辰, 刘树和, 张天宇, 查成. MXene在锂硫电池中应用的研究进展[J]. 材料研究学报, 2023, 37(7): 481-494.
[5] 王伟, 解泽磊, 屈怡珅, 常文娟, 彭怡晴, 金杰, 王快社. Graphene/SiO2 纳米复合材料作为水基润滑添加剂的摩擦学性能[J]. 材料研究学报, 2023, 37(7): 543-553.
[6] 张藤心, 王函, 郝亚斌, 张建岗, 孙新阳, 曾尤. 基于界面氢键结构的石墨烯/聚合物复合材料的阻尼性能[J]. 材料研究学报, 2023, 37(6): 401-407.
[7] 王伟, 彭怡晴, 丁士杰, 常文娟, 高原, 王快社. Ti-6Al-4V合金表面石墨基粘结固体润滑涂层的高温摩擦学性能[J]. 材料研究学报, 2023, 37(6): 432-442.
[8] 邵萌萌, 陈招科, 熊翔, 曾毅, 王铎, 王徐辉. C/C-ZrC-SiC复合材料的Si2+ 离子辐照行为[J]. 材料研究学报, 2023, 37(6): 472-480.
[9] 张锦中, 刘晓云, 杨健茂, 周剑锋, 查刘生. 温度响应性双面纳米纤维的制备和性能[J]. 材料研究学报, 2023, 37(4): 248-256.
[10] 王刚, 杜雷雷, 缪自强, 钱凯成, 杜向博文, 邓泽婷, 李仁宏. 聚多巴胺改性碳纤维增强尼龙6复合材料的界面性能[J]. 材料研究学报, 2023, 37(3): 203-210.
[11] 林师峰, 徐东安, 庄艳歆, 张海峰, 朱正旺. TiZr基非晶/TC21双层复合材料的制备和力学性能[J]. 材料研究学报, 2023, 37(3): 193-202.
[12] 苗琪, 左孝青, 周芸, 王应武, 郭路, 王坦, 黄蓓. 304不锈钢纤维/ZL104铝合金复合泡沫的孔结构、力学、吸声性能及其机理[J]. 材料研究学报, 2023, 37(3): 175-183.
[13] 刘东洋, 童广泽, 高文理, 王卫凯. 2060铝锂合金厚板的各向异性[J]. 材料研究学报, 2023, 37(3): 235-240.
[14] 张开银, 王秋玲, 向军. FeCo/SnO2 复合纳米纤维的制备及其吸波性能[J]. 材料研究学报, 2023, 37(2): 102-110.
[15] 周聪, 昝宇宁, 王东, 王全兆, 肖伯律, 马宗义. (Al11La3+Al2O3)/Al复合材料的高温性能及其强化机制[J]. 材料研究学报, 2023, 37(2): 81-88.