Please wait a minute...
材料研究学报  2017, Vol. 31 Issue (3): 161-167    DOI: 10.11901/1005.3093.2016.288
  研究论文 本期目录 | 过刊浏览 |
硅纳米带电弧等离子体的合成及其储锂电化学特性
余洁意,高嵩,董星龙()
教育部三束材料改性重点实验室 大连理工大学材料科学与工程学院 大连 116024
Electrochemical Performance of Si Nanoribbons as Anode Material for Li-ion Battery Synthesized by Arc-discharge Plasma
Jieyi YU,Song GAO,Xinglong DONG()
Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Ministry of Education), School of Materials Science and Engineering, Dalian University of Technology, Dalian 116023, China
引用本文:

余洁意,高嵩,董星龙. 硅纳米带电弧等离子体的合成及其储锂电化学特性[J]. 材料研究学报, 2017, 31(3): 161-167.
Jieyi YU, Song GAO, Xinglong DONG. Electrochemical Performance of Si Nanoribbons as Anode Material for Li-ion Battery Synthesized by Arc-discharge Plasma[J]. Chinese Journal of Materials Research, 2017, 31(3): 161-167.

全文: PDF(852 KB)   HTML
摘要: 

用直流电弧等离子体法在氢气和氦气混合气氛下制备了硅纳米带(Si NRs),使用透射电子显微镜(TEM)、原子力显微镜(AFM)、X射线衍射光谱(XRD)、Raman光谱、X光电子能谱(XPS)等手段对Si NRs的形貌、结构及成分进行了表征。结果表明,这种硅纳米带(Si NRs)是由细小片状结构Si晶体沿一定的晶体学方向堆积而成的带状纳米结构,以聚结生长机制为主导。Si NRs的宽度约为28 nm、长度大于200 nm、厚度为6.2 nm,比表面积约为164 m2g-1。文中深入探讨了Si NRs的形成机制。这种制备Si NRs的方法成本低,可商业化宏量生产,其产率约为18.6 gh-1。将此Si NRs作为负极活性物质制备了锂离子电池,并测试其嵌/脱锂电化学性能。这种锂离子电池的首次放电比电容为2460 mAhg-1,循环40次后其电容量维持在316 mAhg-1,表现出较好的储锂电化学活性。

关键词 无机非金属材料硅纳米带直流电弧等离子体电化学反应锂离子电池负极材料    
Abstract

Silicon nanoribbons (Si-NRs) were successfully synthesized by direct-current (DC) arc-discharge plasma in a mixed atmosphere of hydrogen and helium, and then characterized by transmission electron microscopy (TEM), atomic force microscopy (AFM), X-ray diffraction (XRD), Raman spectra and X-ray photoelectron spectroscopy (XPS), etc.. This work provides a low cost preparation method for the synthesis of Si-NRs, and it could be commercially produced with a production rate of 18.6 gh-1. The Si NRs consist of fine sheets of ca 28 nm in width, over 200 nm in length and ca 6.2 nm in thickness with specific surface area of 164 m2g-1. The measured electrochemical performance of the Si-NRs as anode of lithium ion batteries reveals that the first discharge specific capacity is 2460 mAhg-1 and it reaches to 316 mAhg-1 after 40 cycles, which exhibits a high activity of insertion/desertion of Li+ ions and possible potentials for further improvement of the cycle stability.

Key wordsinorganic non-metallic materials    silicon nanoribbon    direct-current arc-discharge    electrochemical reaction    lithium-ion battery    anode material
收稿日期: 2016-05-26     
基金资助:国家自然科学基金(51331006、51271044)
图1  Si NRs的TEM和HRTEM图、AFM图以及沿AFM图中绿色横线的水平截面分析图
图2  块体硅和Si NRs的XRD图谱、Raman图以及Si NRs的Si 2p电子XPS图谱和N2吸附-脱附曲线
图3  Si NRs锂离子电池负极材料的循环伏安图、最初两次充放电曲线以及初始和三次循环后的电化学阻抗谱
[1] Edward H.Kottcamp, Volume 3, Alloy Phase Diagrams[M]. USA:The Materials Information Company, 1992
[2] Niu J., Zhang S.,Niu Y., et al.Silicon-based anode materials for lithium-ion batteries[J]. Prog. Chem., 2015, 27(9): 1275
[3] Rtu J. H., Kim J. W., Sung Y. E., et al. Failure modes of silicon powder negative electrode in lithium secondary batteries[J]. Electrochem. Solid ST., 2004, 7(10): A306
[4] Beaulieu L. Y., Eberman K. W., Turner R. L., et al. Colossal reversible volume changes in lithium alloys[J]. Electrochem.Solid ST., 2001, 4(9): A137
[5] Kim I. S., Blomgren G. E., Kumta P. N. Nanostructured Si?/TiB2 composite anodes for Li-?ion batteries[J]. Solid-State Lett., 2003, 6(8): A157
[6] Tedd A., Ferguson P. P., Barker J. G., et al. Comparison of mechanically milled and sputter deposited tin-?cobalt-?carbon alloys using small angle neutron scattering[J]. J. Electrochem. Soc., 2009, 156(12): A1034
[7] Yang J., Winter M., Besnhard J. O. Small particle size multiphase Li-?alloy anodes for lithium-?ion-?batteries[J]. Solid State Ionics, 1996, 90(s1-4): 281
[8] Yang J., Wachtler M., Winter M., Sub-?microcrystalline Sn and Sn-?SnSb powders as lithium storage materials for lithium-?ion batteries[J].Electrochem.Solid ST., 1999, 2(4): 161
[9] Chen I. W., Xue L. A., Development of superplastic structural ceramics[J]. J. Am. Ceram. Soc., 1990, 73(9): 2585
[10] Besnhard J. O., Yang J., Wachtler M., et al. Will advanced lithium-?alloy anodes have a chance in lithium-?ion batteries?[J]. J. Power Sources, 1997, 68(1): 87
[11] Kulish V. V., Malyi O. I., Ng M. F., et al. Enhanced Li adsorption and diffusion in silicon nanosheets based on first principles calculations[J].RSC Adv., 2013, 3(13): 4231
[12] Lu Z., Sim D., Zhou W., et al.Synthesis of ultrathin silicon nanosheets by using graphene oxide as template[J]. Chem. Mater., 2011, 23(24): 5293
[13] Shi W., Peng H., Wang N., et al.Free-?standing single crystal silicon nanoribbons[J]. J. Am. Chem. Soc., 2001, 123(44): 11095
[14] Wei D. P., Chen Q. Metal-?catalyzed CVD method to synthesize silicon nanobelts[J]. J. Phys. Chem. C, 2008, 112(39): 15129
[15] Okamoto H., Kumai Y., Sugiyama Y., et al.Silicon nanosheets and their self-?assembled regular stacking structure[J], J. Am. Chem. Soc., 2010, 132(8): 2710
[16] Zhang S. L., Raman spectroscopy and its application in nanostructures[M]. West Sussex: A John Wiley & Sons Ltd. Publication, 2012.
[17] Faraci G., Gibilisco S., Pennisi A. R., et al. Quantum size effects in Raman spectra of Si nanocrystals[J].J. Appl. Phys., 2011, 109(7): 074311
[18] Faraci G., Gibilisco S., Russo P., et al.Modified Raman confinement model for Si nanocrystals[J]. Phys. Rev. B, 2006, 73(3): 033307
[19] Meier C., LuttjohannS., Kravets V. G., et al. Raman properties of silicon nanoparticles[J]. Physica E, 2006, 32(1-2): 155
[20] Nakano H., Nakano M., Nakaknishi K., et al.Preparation of alkyl-?modified silicon nanosheets by hydrosilylation of layered polysilane (Si6H6)[J]. J. Am. Chem. Soc., 2012, 134(12): 5452
[21] Cao G. Z., Wang Y., Nanostructures and nanomaterials: synthesis, properties, and applications[M]. New Jersey: World Scientific Hackensack, 2011 pp 450-451
[22] Yatsuta S., Kasukabe S., Uyeda R., Formation of ultrafine metal particles by gas evaporation technique. I. Aluminum in helium[J]. Japanese J. Appl. Phys., 1973, 12(11): 1675
[23] Kasukabe S.,Yatsuta S., Uyeda R.,Ultrafine metal particles formed by the gas-?evaporation technique. II. Crystal habits of magnesium, manganese, beryllium, and tellurium[J]. Japanese J. Appl. Phys., 1974, 13(11): 1714
[24] Saito Y., Yatsuya S., Mihama K., Uyeda R., Formation of ultrafine particles by gas-?evaporation technique. V. Silicon and germanium in argon[J].Japanese J. Appl. Phys., 1978, 17(2): 291
[25] Cao G. Z., Wang Y., Nanostructures and nanomaterials: synthesis, properties, and applications[M].New Jersey: World Scientific Hackensack, 2011, 21-23
[26] Yu J. Y., Gao J., Xue F. H., et al. Formation mechanism and optical characterization of polymorphic silicon nanostructures by DC arc-?discharge[J]. RSC Adv., 2015, 5(84): 68714
[27] Cao G. Z., Wang Y., Nanostructures and nanomaterials: synthesis, properties, and applications[M]. New Jersey: World Scientific Hackensack, 2011 pp 152-153
[28] Hartman P., Perdok W. G., Relations between structure and morphology of crystals[J]. Acta Crystallogr., 1955, 8: 49
[29] Ohno T., Yatsuya S., Uyeda R., Formation of ultrafine metal particles by gas-?evaporation technique. III. Aluminum in helium, argon, and xenon, and magnesium in mixtures of inactive gas and air[J]. Japanese J. Appl. Phys., 1976, 15(7): 1213
[30] Hayashi T., Ohno T., Yatsuya S., et al.Formation of ultrafine metal particles by gas-?evaporation technique. IV. Crystal habits of iron and fcc metals, aluminum, cobalt, nickel, palladium, silver, indium, gold and lead[J]. Japanese J. Appl. Phys., 1977, 16(5): 705
[31] Chou S., Wang J., Choucair M., et al.Enhanced reversible lithium storage in a nanosize silicon?/graphene composite[J]. Electrochem. Comm., 2010, 12(2): 303
[32] Magasinski A., Dixon P., Hertzberg B., et al.High-?performance lithium-?ion battery anodes using a hierarchical bottom-?up approach[J]. Nat. Mater., 2010, 9(4): 353
[33] Lu Z., Zhu J., Sim D., et al.In situ growth of Si nanowires on graphene sheets for Li-?ion storage[J]. Electrochim. Acta, 2012, 74: 176
[34] Wang J. T., Wang Y., Huang B., et al. Silicon supportedon stable Si-O-C skeletonin high-performance lithium-ion battery anode materials[J].Acta Phys.-Chim.Sin., 2014, 30(2):305.
[35] Chen K., Bao Z. H., Liu D., et al. Confined synthesis and properties of porous silicon from silica aerogel templates by magnesiothermic reduction[J].Acta Phys.-Chim.Sin., 2011, 27(11):2719.
[36] Zhang T., Gao J., Fu L., et al.Natural graphite coated by Si nanoparticles as anode materials for lithium ion batteries[J].J. Mater. Chem., 2007, 17(13):1321.
[37] Kunai Y., Shirai S., Sudo E., et al.Characteristics and structural change of layered polysilane (Si6H6) anode for lithium ion batteries[J].J. Power Sources, 2011, 196(3):1503.
[38] Guo Z. P., Zhao Z. W., Liu H. K., et al. Electrochemical lithiation and de-?lithiation of MWNT-?Sn?/SnNi nanocomposites[J].Carbon, 2005, 43(7):1392.
[39] Peng Y., Chen Z., Wen J.,et al.Hierarchical manganese oxide?/carbon nanocomposites for supercapacitor electrodes[J].Nano Res., 2011, 4(2):216
[1] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[4] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[5] 李延伟, 罗康, 姚金环. Ni(OH)2 负极材料的十二烷基硫酸钠辅助制备及其储锂性能[J]. 材料研究学报, 2023, 37(6): 453-462.
[6] 余谟鑫, 张书海, 朱博文, 张晨, 王晓婷, 鲍佳敏, 邬翔. N掺杂生物炭的制备及其对Co2+ 的吸附性能[J]. 材料研究学报, 2023, 37(4): 291-300.
[7] 朱明星, 戴中华. SrSc0.5Nb0.5O3 改性BNT基无铅陶瓷的储能特性研究[J]. 材料研究学报, 2023, 37(3): 228-234.
[8] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[9] 周毅, 涂强, 米忠华. 制备方法对磷酸盐微晶玻璃结构和性能的影响[J]. 材料研究学报, 2023, 37(10): 739-746.
[10] 谢锋, 郭建峰, 王海涛, 常娜. ZnO/CdS/Ag复合光催化剂的制备及其催化和抗菌性能[J]. 材料研究学报, 2023, 37(1): 10-20.
[11] 刘东璇, 陈平, 曹新荣, 周雪, 刘莹. 碗状C@FeS2@NC复合材料的制备及其电化学性能[J]. 材料研究学报, 2023, 37(1): 1-9.
[12] 余超, 邢广超, 吴郑敏, 董博, 丁军, 邸敬慧, 祝洪喜, 邓承继. 亚微米Al2O3 对重结晶碳化硅的作用机制[J]. 材料研究学报, 2022, 36(9): 679-686.
[13] 方向明, 任帅, 容萍, 刘烁, 高世勇. 自供能Ag/SnSe纳米管红外探测器的制备和性能研究[J]. 材料研究学报, 2022, 36(8): 591-596.
[14] 李福禄, 韩春淼, 高嘉望, 蒋健, 许卉, 李冰. 氧化石墨烯的变温发光[J]. 材料研究学报, 2022, 36(8): 597-601.
[15] 李玲芳, 原志朋, 范长岭. SnO2@Ti3C2Tx 负极材料的制备及其应用[J]. 材料研究学报, 2022, 36(8): 602-608.