Please wait a minute...
材料研究学报  2017, Vol. 31 Issue (2): 145-151    DOI: 10.11901/1005.3093.2016.172
  本期目录 | 过刊浏览 |
超支化环氧树脂增韧增强苯并噁嗪树脂
靳奇峰1,2(),姜冬月2,佟丽娜2,谭荔元2
1 湖南工业大学包装新材料与技术重点实验室 株洲 412007
2 辽宁师范大学化学化工学院 大连 116029
Simultaneously Toughening and Reinforcing Modification of Benzoxazineresin with Hyperbranched Epoxy
Qifeng JIN1,2(),Dongyue JIANG2,Lina TONG2,Liyuan TAN2
1 Key Laboratory of New Materials and Technology for Packaging, Hunan University of Technology, Zhuzhou 412007, China
2 School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, China
引用本文:

靳奇峰,姜冬月,佟丽娜,谭荔元. 超支化环氧树脂增韧增强苯并噁嗪树脂[J]. 材料研究学报, 2017, 31(2): 145-151.
Qifeng JIN, Dongyue JIANG, Lina TONG, Liyuan TAN. Simultaneously Toughening and Reinforcing Modification of Benzoxazineresin with Hyperbranched Epoxy[J]. Chinese Journal of Materials Research, 2017, 31(2): 145-151.

全文: PDF(2768 KB)   HTML
摘要: 

将芳香二元胺型苯并噁嗪(DDM)与全脂肪链超支化环氧树脂(AHEP)按照不同配比进行共混固化,制备出完全相容的DDM/AHEP共混固化物。用傅里叶变换红外光谱和差示扫描量热仪研究了共固化体系的固化物结构特征及其固化反应行为。使用动态热机械性能分析仪表征了共固化体系固化物的热机械性能,结果表明,共混固化物的冲击强度和弯曲模量协同增韧增强。当AHEP添加量为5%(质量分数)时DDM/AHEP固化物的弯曲模量比纯苯并噁嗪树脂提高了11.5%,冲击强度则提高了167%。共混固化物的断面形貌,呈现出原位增韧增强的特征。

关键词 有机高分子材料超支化环氧树脂苯并噁嗪树脂固化反应改性    
Abstract

Fullycompatibleblend cured resins DDM/AHEP were prepared by incorporating different among of aliphaticand epoxide-functional hyperbranched polymer (AHEP) into an aromatic-diamine typebenzoxazine(DDM) network without cure-induced phase separation. Then their structure and thermo-mechanical property were investigated by means of FTIR,DSC and DMA. The results show that the Young's modulus and impact toughness of DDM could be simultaneously enhanced by the incorporating AHEP.Flexural strength and impact strength of the cured DDM/AHEP blend approach a maximum for5% incorporationof AHEP, representing an increase of over 11.5% and 167% respectively in comparison to that of the original DDM. The fracture surface morphology of the cured blend has the characteristic of in-situ toughness enhancement.

Key wordsorganic polymer materials    hyperbranched epoxy    polybenzoxazine    curing reaction    modification
收稿日期: 2016-03-31     
基金资助:辽宁省博士启动基金(20111066)
图1  DDM、PDDM及DDM/AHEP-10共固化产物的红外光谱图
图2  DDM 与AHEP共聚反应的示意图
图3  DDM与DDM/AHEP-10共混物的DSC曲线
Method E (kJ/mol) E?(kJ/mol) A(min-1) n
DDM “Kissinger” 83.81
“Ozawa” 91.04 88.43 5.260×109 0.9100
DDM/AHEP-10 “Kissinger” 70.68
“Ozawa” 78.26 74.47 2.250×107 0.6270
表1  DDM与DDM/AHEP-10共混物的△E、 A以及n
AHEP, mass fraction (%) Totala
(J/g)
Residualb
(J/g)
Degree of cure
(%)
0 351.38 41.81 88.1
5 290.67 39.53 86.4
10 313.79 45.44 85.5
15 255.93 40.45 84.2
表2  DDM/AHEP共混体系的反应热焓和固化度
AHEP/%,
mass fraction
Tg/oC T/oC Er/MPa Ve/molm-3,×103
0 209 239 40.19 3.1
5 204 234 29.37 2.3
10 200 230 35.92 2.9
15 197 227 30.01 2.4
表3  DDM/AHEP共固化体系固化物的交联密度
图4  DDM/AHEP共固化产物中AHEP含量与tanδ的关系
图5  DDM/AHEP共固化产物的弯曲强度与AHEP含量的关系
图6  DDM/AHEP共固化产物的弯曲模量与AHEP含量的关系
图7  DDM/AHEP共固化产物的冲击强度与AHEP含量的关系
图8  DDM固化物和DDM/AHEP-10共固化产物的冲击试样的断裂表面SEM照片
[1] Zeng M, Wang J, Li R R, et al.The curing behavior and thermal property of graphene oxide/benzoxazinenanocomposites[J]. Polymer, 2013, 54: 3107
[2] Zhang K, Ishida H.Thermally stable polybenzoxazines via ortho-norbornene functional benzoxazine monomers: unique advantages in monomer synthesis, processing and polymer properties[J]. Polymer, 2015, 66: 240
[3] Nash N H, Ray D, Young T M, et al.The influence of hydrothermal conditioning on the Mode-I, thermal and flexural properties of carbon/benzoxazine composites with a thermoplastic toughening interlayer[J]. Comp. Part A: Appl. Sci. Manuf., 2015, 76: 135
[4] Xiang H, Ling H, Gu Y.Toughening modification of benzoxazine with CTBN rubber[J]. China Synth. Resin Plast., 2010, 27(6): 21
[4] (向海, 凌红, 顾宜. 羧基丁腈橡胶增韧改性苯并噁嗪树脂[J]. 合成树脂及塑料, 2010, 27(6): 21)
[5] Rimdusit S, Kunopast P, DueramaeI.Thermomechanical properties of arylamine-based benzoxazine resins alloyed with epoxy resin[J].Polym. Eng. Sci., 2011, 51: 1797
[6] Jin L, Agag T, Ishida H.Bis(benzoxazine-maleimide)s as a novel class of high performance resin: synthesis and properties[J]. Eur. Polym. J., 2010, 46: 354
[7] Wu G L, Kou K C, Zhuo L H, et al.Preparation and characterization of novel dicyanate/benzoxazine/bismaleimide copolymer[J]. Thermochim. Acta, 2013, 559: 86
[8] Saz-Orozco B D, Ray D, Kervennic A, et al. Toughening of carbon fibre/polybenzoxazine composites by incorporating polyethersulfone into the interlaminar region[J]. Mater. Design, 2016, 93: 297
[9] De B, Karak N.Novel high performance tough hyperbranched epoxy by an A2+B3polycondensation reaction[J]. J. Mater. Chem. A, 2013, 1: 348
[10] Si J J, Xu P J, He W, et al.Bis-benzoxazine resins with high char yield and toughness modified by hyperbranched poly (resorcinol borate)[J]. Comp. Part A: Appl. Sci. Manuf., 2012, 43: 2249
[11] Li S F, Wang H L, Tao M.Synthesis and characterization of a new reactive hyperbranched polyphosphate ester, and its modification on benzoxazine-bisoxazoline resins[J]. Des. Monomers Polym., 2014, 17: 693
[12] Zhang J H, Liu T T, Liu C H, et al.Benzoxazine toughened and reinforced by hyperbranched epoxy resin [A]. Academic of National Polymer Materials Science and Engineering Conference (part II)[C]. Beijing: Chinese Chemical Society, 2014: 553
[12] (张俊珩, 刘婷婷, 刘春海等. 超支化环氧树脂增韧增强改性苯并噁嗪树脂的研究[A]. 2014年全国高分子材料科学与工程研讨会学术论文集(下册)[C]. 北京: 中国化学会, 2014: 553)
[13] Jin Q F, Misasi J M, Wiggins J S, et al.Simultaneous reinforcement and toughness improvement in an aromatic epoxy network with an aliphatic hyperbranched epoxy modifier[J]. Polymer, 2015, 73: 174
[14] Kumar S R, Dhanasekaran J, Mohan S K.Epoxybenzoxazine based ternary systems of improved thermo-mechanical behavior for structural composite applications[J]. RSC Adv., 2015, 5: 3709
[15] Fu Z E, Xu K, Liu X, et al.Synthesis, characterization and thermal properties of fluorene-based benzoxazines[J]. Polym. Mater. Sci. Eng., 2012, 28(2): 5
[15] (付子恩, 许凯, 刘新等. 芴基苯并噁嗪的合成表征及热性能[J]. 高分子材料科学与工程, 2012, 28(2): 5)
[16] Zhao R X, Zhang D Z, Lu S P, et al.Synthesis and characterization of trifunctional epoxy resin[J]. Thermosetting Resin, 2013, 28(5): 6
[16] (赵仁翔, 张德震, 陆士平等. 三官能团环氧树脂的合成及表征[J]. 热固性树脂, 2013, 28(5): 6)
[17] Li Y L, Tang B M, Liang Z Q, et al.Study on the curing process of benzoxazine-epoxy copolymerization[J]. Thermosetting Resin, 2008, 23(2): 15
[17] (李艳亮, 唐邦铭, 梁子青等. 苯并噁嗪/环氧树脂共聚固化过程研究[J]. 热固性树脂, 2008, 23(2): 15)
[18] Li Y M, Fang X, Ren T T, et al.Study on the performance of butyl amine-fluorenylbenzoxazine[J]. Chem. Adhes., 2013, 35(2): 10
[18] (黎亚明, 方雪, 任甜甜等. 丁胺-芴基苯并噁嗪/环氧共混树脂的性能研究[J]. 化学与黏合, 2013, 35(2): 10)
[19] Liu M Q, Liu J J, Zou W.Research progress of benzoxazine and polybenzoxazine in the preparation of C/C composites[J]. Mater. Rev., 2012, 26(3): 88
[19] (刘明强, 刘建军, 邹武. 苯并噁嗪及其在制备C/C复合材料领域的研究进展[J]. 材料导报, 2012, 26(3): 88)
[20] Kissinger H E.Reaction kinetics in differential thermal analysis[J]. Anal. Chem., 1957, 29: 1702
[21] Ozawa T.Kinetic analysis of derivative curves in thermal analysis[J]. J. Therm. Anal., 1970, 2: 301
[22] Liu X D, Cheng J, Lin X, et al.Curing kinetics of epoxy resins/amine system and epoxy/episulfide resin/amine system[J]. CIESC J., 2013, 64: 4046
[22] (刘晓东, 程珏, 林欣等. 环氧树脂和环氧/环硫树脂与胺的固化反应动力学[J]. 化工学报, 2013, 64: 4046)
[23] Holroyd M, Ilie N.Effects of exposure time and exposure distance on the degree of cure in light-activated pit and fissure sealants[J]. J. Dent., 2013, 41: 1222
[24] Emrick T, Chang H T, Fréchet J M J. Thepreparation of hyperbranchedaromatic and aliphatic polyether epoxies by chloride-catalyzed proton transfer polymerization from ABn and A2+B3monomers[J]. J. Polym. Sci., Part A: Polym. Chem., 2000, 38: 4850
[25] LaiarinandrasanaL, Fu Y, Halary J L. Toughness improvement of epoxy networks by nanophase-separating antiplasticizers[J]. J. Appl. Polym. Sci., 2012, 123: 3437
[26] Tu J W, Tucker S J, Christensen S, et al.Phenylenering motions in isomeric glassy epoxy networks and their contributions to thermaland mechanical properties[J]. Macromolecules, 2015, 48: 1748
[27] MarksM J, Snelgrove R V.Effect of conversion on the structure-property relationships of amine-cured epoxy thermosets[J]. ACS Appl. Mater. Interfaces, 2009, 1: 921
[28] Tomuta A, Ferrando F, Serraà, etal.New aromatic-aliphatic hyperbranched polyesters with vinylic end groups of different length as modifiers of epoxy/anhydride thermosets[J]. React. Funct. Polym., 2012, 72: 556
[1] 王乾, 蒲磊, 贾彩霞, 李志歆, 李俊. 碳纤维/环氧复合材料界面改性的不均匀性[J]. 材料研究学报, 2023, 37(9): 668-674.
[2] 李林龙, 杨丽琪, 薛伟海, 高禩洋, 王旭, 段德莉, 李曙. 稀土改性GCr15钢与保持架材料间的滑动摩擦磨损[J]. 材料研究学报, 2023, 37(6): 408-416.
[3] 叶姣凤, 王飞, 左洋, 张钧翔, 罗晓晓, 冯利邦. 兼具高强度、高韧性和自修复性能的环氧树脂改性热可逆聚氨酯[J]. 材料研究学报, 2023, 37(4): 257-263.
[4] 李瀚楼, 焦晓光, 朱欢欢, 赵晓欢, 矫庆泽, 冯彩虹, 赵芸. 支链含氟聚酯的合成和性能[J]. 材料研究学报, 2023, 37(4): 315-320.
[5] 王刚, 杜雷雷, 缪自强, 钱凯成, 杜向博文, 邓泽婷, 李仁宏. 聚多巴胺改性碳纤维增强尼龙6复合材料的界面性能[J]. 材料研究学报, 2023, 37(3): 203-210.
[6] 马逸舟, 赵秋莹, 杨路, 裘进浩. 热塑型聚酰亚胺/聚偏氟乙烯全有机复合薄膜的制备及其介电储能[J]. 材料研究学报, 2023, 37(2): 89-94.
[7] 殷洁, 胡云涛, 刘慧, 杨逸霏, 王艺峰. 基于电沉积技术构建聚苯胺/海藻酸膜及电化学性能研究[J]. 材料研究学报, 2022, 36(4): 314-320.
[8] 申延龙, 李北罡. 磁性氨基酸功能化海藻酸铝凝胶聚合物的制备及对偶氮染料的超强吸附[J]. 材料研究学报, 2022, 36(3): 220-230.
[9] 曾强, 王荣超, 刘绮, 彭化南, 陈平. 磁功能化石墨烯改性环氧树脂及其复合材料的性能[J]. 材料研究学报, 2022, 36(12): 881-886.
[10] 崔丽, 孙丽丽, 郭鹏, 马鑫, 王舒远, 汪爱英. 沉积时间对聚醚醚酮表面类金刚石薄膜的结构和性能的影响[J]. 材料研究学报, 2022, 36(11): 801-810.
[11] 龙庆, 王传洋. 不同碳黑含量PMMA的热降解行为和动力学分析[J]. 材料研究学报, 2022, 36(11): 837-844.
[12] 蒋平, 吴丽华, 吕太勇, José Pérez-Rigueiro, 王安萍. 蜘蛛大壶状腺丝的反复拉伸力学行为和性能[J]. 材料研究学报, 2022, 36(10): 747-759.
[13] 蔡垚, 吴红枚, 刘武, 李端, 范诗易, 王洋洋. 环氧大豆油化学接枝聚乳酸的制备及其性能[J]. 材料研究学报, 2022, 36(1): 73-80.
[14] 陈怿咨, 张承双, 陈平. 用常压空气等离子体对PBO纤维表面接枝改性[J]. 材料研究学报, 2021, 35(9): 641-650.
[15] 鄢俊, 杨进, 王涛, 徐桂龙, 李朝晖. 有机硅油改性水性酚醛的制备及其性能[J]. 材料研究学报, 2021, 35(9): 651-656.