Please wait a minute...
材料研究学报  2017, Vol. 31 Issue (2): 129-135    DOI: 10.11901/1005.3093.2016.344
  本期目录 | 过刊浏览 |
热输入对1200 MPa级HSLA钢焊缝组织性能的影响
徐彬1,2,马成勇2,李莉1(),肖晓明2,王剑锋1,2
1 昆明理工大学材料科学与工程学院 昆明 650093
2 钢铁研究总院焊接研究所 北京 100081
Effect of Heat Input on Microstructure and Property of Weld Joints of a 1200 MPa Grade HSLA Steel
Bin XU1,2,Chengyong MA2,Li LI1(),Xiaoming XIAO2,Jianfeng WANG1,2
1 College of Materials Science and Engineering,Kunming University of Science and Technology,Kunming 650093, China
2 Welding Institute, China Iron and Steel Research Institute Group,Beijing 100081,China
引用本文:

徐彬,马成勇,李莉,肖晓明,王剑锋. 热输入对1200 MPa级HSLA钢焊缝组织性能的影响[J]. 材料研究学报, 2017, 31(2): 129-135.
Bin XU, Chengyong MA, Li LI, Xiaoming XIAO, Jianfeng WANG. Effect of Heat Input on Microstructure and Property of Weld Joints of a 1200 MPa Grade HSLA Steel[J]. Chinese Journal of Materials Research, 2017, 31(2): 129-135.

全文: PDF(5116 KB)   HTML
摘要: 

为了研究焊接工艺条件对焊缝金属组织性能的影响,采用不同热输入对1200 MPa级低合金高强钢进行熔化极气体保护焊,利用OM、SEM、TEM观察并分析不同焊接热输入对焊缝组织及力学性能的影响规律。结果显示,当热输入为16、20、25 kJ/cm时,焊缝组织主要以针状铁素体为主,并含有少量M-A组元以及粒状贝氏体。随焊接热输入增大,针状铁素体组织有所增多且板条宽度逐渐增大,而粒状贝氏体组织减少。焊缝内非金属夹杂物类型多为促进针状铁素体形核的Ti-Mn-Al-O-S系复合氧化物夹杂。焊缝金属硬度、冲击韧性及焊接接头强度随热输入增大基本呈下降趋势,并且各焊接热输入条件下焊缝金属具有良好的强韧性匹配。随热输入增大,焊缝金属断裂特征由韧性、脆性混合型断裂向脆性断裂转变。热输入为20 kJ/cm时,焊接接头综合性能最佳。

关键词 金属材料低合金高强钢热输入焊缝金属显微组织力学性能    
Abstract

A 1200 MPa grade high-strength low-alloy (HSLA) steel was welded by metal active gas(MAG) welding method with filler material of GHS50NS welding wire by three different heat inputs. And then the effect of heat input on microstructure and property of the weld joints was investigated by means of optical microscopy, scanning electronmicroscopy, transmission electron microscopy and mechanical tests. The results indicate that the microstructure of weld joints consists mainly of acicular ferrite, a granular bainite and small amount of M-A by different heat inputs. With the increasing heat input, the amount of acicular ferrite was increased and its lath width was coarsened while the amount of granular bainite decreased, and the type of non metallic inclusions which promote the nucleation of acicular ferrite in weld joints was a complex oxide-sulfide Ti-Mn-Al-O-S. The strength and hardness of the welded joint decreases with the increase of heat input, but it has a good combination of strength and toughness. Along with the increase of heat input, the morphology of the impact fracture of the weld joint changed from fracture with mixed mode to brittle fracture. When the heat input is 20 kJ/cm, the comprehensive performance of the welded joint is the best.

Key wordsmetallic materials    HSLA steel    heat input    weld metal    microstructure    mechanical properties
收稿日期: 2016-06-19     
基金资助:国防基础科研计划
图1  母材显微组织
Material C Si Mn Ni Co Cu Mo Cr
Steel 0.20 0.53 1.32 0.36 0.009 0.013 0.25 0.56
Deposited metal 0.083 0.49 1.00 0.35 -- 0.34 0.13 --
表1  实验钢及GHS50NS熔敷金属化学成分(质量分数/%)
Material Tensile strength
Rm/MPa
Yield strength
Rp0.2/MPa
Elongation
A/%
Section shrinkage Z/% AKV(-40℃) /J
Steel 1464 1246 12.5 60 24
Deposited metal 605 524 26.5 71 110
表2  实验钢及GHS50NS熔敷金属力学性能
图2  坡口示意图
图3  不同焊接热输入下的焊缝微观组织
图4  不同焊接热输入下的焊缝组织透射照片
图5  焊缝组织中的夹杂物能谱分析
图6  不同热输入下焊接接头硬度变化
Heat input
/(kJ/cm)
Rod tensile test of weld metal Tensile test of welded joint
Tensile strength/MPa Yield strength/MPa Elongation
/%
Reduction of area/% Tensile strength
/MPa
Fracture location
16 658 580 26.5 76 823 Weld
20 698 591 27.5 78 788 Weld
25 629 515 29.5 74 755 Weld
表3  不同热输入下焊接接头力学性能
图7  不同热输入下焊缝金属冲击断口形貌
[1] Zou Z D, Li Y J, Yin S K.Welding and Engineering Application of Low-Alloy Q+A High Strength Steel [M]. Beijing: Chemical Industry Press, 2000: 1
[1] (邹增大, 李亚江, 尹士科. 低合金调质高强度钢焊接及工程应用 [M]. 北京: 化学工业出版社, 2000: 1)
[2] Xu W Q, Ren Y F.Present situation of welding processes for construction machinery structural components and their developing trends[J]. Construction Machinery and Equipment, 2005,(1): 50, 2005, (1): 50)
[3] Cao R, Zhu S S, Feng W, et al.Effects of weld metal property and fraction on the toughness of welding joints of a 8%Ni 980MPa high strength steel[J]. J. Mater. Process. Tech., 2011, 211: 759
[4] Zhu S S, Cao R, Feng W, et al.Study on weakest link of welding joint of a 980 MPa high strength steel[J]. Trans. China Weld. Inst., 2011, 32(2): 77
[4] (朱莎莎, 曹睿, 冯伟等. 980 MPa高强钢焊接接头薄弱环节的确定[J]. 焊接学报, 2011, 32(3): 77)
[5] Cao R, Feng W, Peng Y, et al.Analysis on impact property of welded joint HAZ of 980 MPa high strength steel[J]. Trans.China Weld. Inst., 2010, 31(8): 93
[5] (曹睿, 冯伟, 彭云等. 980 MPa级高强钢焊接接头HAZ冲击性能的分析[J]. 焊接学报, 2010, 31(8): 93)
[6] Davis C L, King J E.Cleavage initiation in the intercritically reheated coarse-grained heat-affected zone: Part 1. Fractographic evidence[J]. Metall. Mater. Trans., 1994, 25A: 563
[7] Du Q B, Ma C Y, Peng Y, et al.Effect of heat input on microstructure and performance of weld metal for Q890 high strength steel[J]. Mater. Sci. Technol., 2013, 21(5): 143
[7] (杜全斌, 马成勇, 彭云等. 热输入对Q890高强钢焊缝组织及性能的影响[J]. 材料科学与工艺, 2013, 21(5): 143)
[8] Qiao Y, Argon A S.Cleavage crack resistance of high angle grain boundaries in Fe-3%Si alloy[J]. Mech. Mater., 2003, 35: 313
[9] Qiao Y, Argon A S.Cleavage crack-growth-resistance of grain boundaries in polycrystalline Fe-2%Si alloy: experiments and modeling[J]. Mech. Mater., 2003, 35: 129
[10] Díaz-Fuentes M, Iza-Mendia A, Gutiérrez I.Analysis of different acicular ferrite microstructures in low-carbon steels by electron backscattered diffraction. Study of their toughness behavior[J].Metallurg. Mater. Trans., 2003, 34A: 2505
[11] Zhao M C, Hanamura T, Qiu H, et al.Lath boundary thin-film martensite in acicular ferrite ultralow carbon pipeline steels[J]. Mater.Sci. Eng., 2005, 395A: 327
[12] Hanamura T, Yin F, Nagai K.Ductile-brittle transition temperature of ultrafine ferrite/cementite microstructure in a low carbon steel controlled by effective grain size[J]. ISIJ Int., 2004, 44: 610
[13] Liu H J.Welding Metallurgy and Welding Performance [M]. Beijing: China Machine Press, 2007: 410
[13] (刘会杰. 焊接冶金与焊接性 [M]. 北京: 机械工业出版社, 2007: 410)
[14] An T B, Shan J G, Wei J S, et al.Effect of heat input on microstructure and performance of welded joint in 1000 MPa grade steel for construction machinery[J]. J. Mech. Eng., 2014, 50(22): 42
[14] (安同邦, 单际国, 魏金山等. 热输入对1000 MPa级工程机械用钢接头组织性能的影响[J]. 机械工程学报, 2014, 50(22): 42)
[1] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[3] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[4] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[5] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[6] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[7] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[8] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[9] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[10] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[11] 陈晶晶, 占慧敏, 吴昊, 朱乔粼, 周丹, 李柯. 纳米晶CoNiCrFeMn高熵合金的拉伸力学性能[J]. 材料研究学报, 2023, 37(8): 614-624.
[12] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[13] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[14] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[15] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.