Please wait a minute...
材料研究学报  2011, Vol. 25 Issue (2): 141-146    
  研究论文 本期目录 | 过刊浏览 |
Fe3O4十八面体和十二面体的合成及磁性能
李万喜1,2,吕宝亮1, 徐耀1, 吴东1
1.中国科学院山西煤炭化学研究所煤转化国家重点实验室 太原 030001
2.中国科学院研究生院 北京100049
Synthesis and Magnetic Properties of Dodecahedral and Octodecahedral Magnetite
LI Wanxi1,2, LV Baoliang1, XU Yao1,  WU Dong1
1.State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001
2.Graduate University of the Chinese Academy of Sciences, Beijing 100049
引用本文:

李万喜 吕宝亮 徐耀 吴东. Fe3O4十八面体和十二面体的合成及磁性能[J]. 材料研究学报, 2011, 25(2): 141-146.
, , , . Synthesis and Magnetic Properties of Dodecahedral and Octodecahedral Magnetite[J]. Chin J Mater Res, 2011, 25(2): 141-146.

全文: PDF(945 KB)  
摘要: 在水热合成α--Fe2O3十八面体和十二面体的基础上, 以5% H2+95% N2为还原介质, 通过控制还原条件制备出纯相Fe3O4十八面体和十二面体颗粒。用X射线衍射、扫描电镜、X射线光电子能谱、透射电镜和振动样品磁强计等手段对样品进行了表征。结果表明, 颗粒表面氟离子吸附层的存在是其形貌保持较好的重要原因。
与其它形貌的Fe3O4颗粒比较, 本文合成的多面体Fe3O4颗粒矫顽力较高, 主要归因于吸附的氟离子层和材料的形貌结构。
关键词 无机非金属材料四氧化三铁多面体氟离子磁性能    
Abstract:Octodecahedral and dodecahedral magnetite (Fe3O4) particles were prepared by reducing hematite (α–Fe2O3) polyhedra in 5% H2+95% N2 atmosphere. The samples were characterized by X–ray diffraction, scanning electron microscopy, X-ray photoelectron spectroscopy, transmission electron microscopy and vibrating sample magnetometer. The results show that the existence of fluorinion adsorption layer on the surface of particles may be primary reason for holding the polyhedral morphology. Magnetic analysis shows that the obtained Fe3O4 polyhedral particles possess higher coercivity than the Fe3O4 particles reported by others, mainly due to the adsorbed fluorinion and the morphology and structure of polyhedral particles.
Key wordsinorganic non-metallic materials    Fe3O4    polyhedra    fluorinion    magnetic properties
收稿日期: 2010-12-03     
ZTFLH: 

TB321

 
基金资助:

国家自然科学基金10835008资助项目。

1 B.P.Jia, L.Gao, Morphological transformation of Fe3O4 spherical aggregates from solid to hollow and their selfassembly under an external magnetic field, J. Phys. Chem. C, 112, 666(2008)

2 T.Hyeon, Chemical synthesis of magnetic nanoparticles, Chem. Commun., 8, 927(2003)

3 H.M.Fan, J.B.Yi, Y.Yang, K.W.Kho, H.R.Tan, Z.X.Shen, J.Ding, X.W.Sun, M.C.Olivo, Y.P.Feng, Single-crystalline MFe2O4 nanotubes/nanorings synthesized by thermal transformation process for biological applications, ACSNANO, 3(9), 2798(2009)

4 J.Park, E.Lee, N.M.Hwang, M.Kang, S.C.Kim, Y.Hwang, J.G.Park, H.J.Noh, J.Y.Kim, J.H.Park, T.Hyeon, Onenanometer-scale size-controlled synthesis of monodisperse magnetic iron oxide nanoparticles, Angew. Chem. Int. Ed., 44(19), 2872(2005)

5 X.M.Liu, S.Y.Fu, H.M.Xiao, Fabrication of octahedral magnetite microcrystals, Materials Letters, 60(24), 2979(2006)

6 S.H.Sun, H.Zeng, D.B.Robinson, S.Raoux, P.M.Rice, S.X.Wang, G.X.Li, Monodisperse MFe2O4 (M=Fe, Co, Mn) Nanoparticles, J. Am. Chem. Soc., 126, 273(2004)

7 J.L.Zhang, Y.Wang, H.Ji, Magnetic nanocomposite catalysts with high activity and selectivity for selective hydrogenation of ortho-chloronitrobenzene, Journal of Catalysis, 229(1), 114(2005)

8 A.H.Lu, E.L.Salabas, F.Schuth, Magnetic nanoparticles: Synthesis, protection, functionalization, and application, Angew. Chem. Int. Ed., 46, 1223(2007)

9 D.K.Kim, Y.Zhang, J.Kehr, T.Klason, B. Bjelke, M. Muhammed, Characterization and MRI study of surfactant-coated superparamagnetic nanoparticles administered into the rat brain, Magn. Magn. Mater., 225, 256(2001)

10 L.Fu, V.P.Dravid, D.L.Johnson, Self-assembled(SA) bilayer molecular coating on magnetic nanoparticles, Appl. Surf. Sci., 181, 173(2001)

11 Z.L.Liu, X.Wang, K.L.Yao, Synthesis of magnetite nanoparticles in W/O microemulsion, J. Mater. Sci., 39, 2633(2004)

12 S.R.Wan, J.S.Huang, H.S.Yan, K.L.Liu, Size-controlled preparation of magnetite nanoparticles in the presence of graft copolymers, J. Mater. Chem., 16, 298(2006)

13 J.Chen, F.B.Wang, K.L.Huang, Y.N.Liu, S.Q.Liu, Preparation of Fe3O4 nanoparticles with adjustable morphology, Journal of Alloys and Compounds, 475, 898(2009)

14 L.J.Zhao, L.F.Duan, Uniform Fe3O4 Octahedra with Tunable Edge Length–Synthesis by a Facile Polyol Route and Magnetic Properties, Eur. J. Inorg. Chem., 36, 5635(2010)

15 D.F.Peng, S.Beysen, Q.Li, J.K.Jian, Y.F.Sun, J.Jiwuer, Hydrothermal growth of octahedral Fe3O4 crystals, Particuology, 7, 35(2009)

16 B.L.Lv, Z.Y.Liu, H.Tian, Y.Xu, D.Wu, Y.H.Sun, Singlecrystalline dodecahedral and octodecahedral α–Fe2O3 particles synthesized by a fluoride anion-assisted hydrothermal method, Adv. Funct. Mater., 20(22), 3987(2010)

17 H.L.Cao, X.F.Qian, C.Wang, X.D.Ma, J.Yin, Z.K.Zhu, High Symmetric 18-facet polyhedron Nanocrystals of Cu7S4 with a hollow nanocage, J. Am. Chem. Soc., 127(46), 16024(2005)

18 R.M.Resendez, O.B.Miguell, M.P.Morales, P.Bonville, C.J.Serna, Microstructural characterization of ellipsoidal iron metal nanoparticles, Nanotechnology, 15(4), 256(2004)

19 F.Jiao, J.C.Jumas, M.Womes, A.V.Chadwick, A.Harrison, P.G.Bruce, Synthesis of ordered mesoporous Fe3O4 and γ–Fe2O3 with rystalline walls using post–template reduction/oxidation, J. Am. Chem. Soc., 128(39), 12906(2006)

20 A.P.Grosvenor, B.A.Kobe, M.C.Biesinger, Investigation of multiplet splitting of Fe 2p XPS spectra and bonding in iron compounds, Surf. Interface. Anal., 36(12), 1564(2004)

21 M.ET-Tabirou, B.Dupre, C.Gleitzer, Hematite single crystal reduction into magnetite with CO-CO2, Met. Trans. B, 19(2), 315(1988)

22 W.M.Hussage, T.Bakker, M.E.Kock, R.H.Heerema, Influence of reduction conditions on the expansion and microtexture of sintered hematite compacts during the transition to magnetite, Miner. Metallurg. Process, 16(3), 23(1999)

23 X.Y.Li, Z.J.Si, Y.Q.Lei, J.K.Tang, S.Wang, S.Q.Su, S.Y.Song, L.J.Zhao, H.J.Zhang, Direct hydrothermal synthesis of single-crystalline triangular Fe3O4 nanoprisms, CrystEngComm, 12(7), 2060(2010)

24 F.Bodker, M.F.Hansen, C.B.Koch, K.Lefmann, S.Morup, Magnetic properties of hematite nanoparticles, Phys. Rev. B, 61(10), 6826(2000)

25 J.Wang, Q.W.Chen, C.Zeng B.Y.Hou, Magnetic-fieldinduced growth of single-crystalline Fe3O4 nanowires, Adv. Mater., 16(2), 139(2004)

26 J.P.Ge, Y.X.Hu, M.Biasini, W.P.Beyermann, Y.D.Yin, Superparamagnetic magnetite colloidal nanocrystal clusters, Angew. Chem. Int. Ed., 46, 4344(2007)

27 Y.Xiong, J.Ye, X.Y.Gu, Q.W.Chen, Synthesis and assembly of magnetite nanocubes into flux-closure rings, J. Phys. Chem. C, 111(19), 7002(2007)

28 C.Q.Hu, Z.H.Gao, X.R.Yang, Fabrication and magnetic properties of Fe3O4 octahedra, Chem. Phys. Lett., 429, 516(2006)

29 Y.M.Zhao, C.W.Dunnill, Y.Q.Zhu, D.H.Gregory, W.Kockenberger, Y.H.Li, W. B.Hu, I.Ahmad, D.G.McCartney, Low-temperature magnetic properties of hematite nanorods, Chem. Mater., 19, 916(2007)

30 YAN Mi, PENG Xiaoling, Magnetic Foundation and Magnetic Materials, (Zhejiang University Press, Hangzhou, 2006) p.68

(严密, 彭晓领, 磁学基础与磁性材料 (杭州, 浙江大学出版社, 2006) p.68)

31 Z.L.Wang, Y.Liu, Z.Zhang, Handbook of Nanophase and Nanostructured Materials, Vol III: Materials Systems and Applications I, (Beijing, Tsinghua University Press, 2003) p.239

32 J.Wang, Z.M. Peng, Y.J.Huang, Q.W.Chen, Growth of magnetite nanorods along its easy–magnetizationaxis of [110], Journal of Crystal Growth, 263, 616 (2004)
[1] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[4] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[5] 李延伟, 罗康, 姚金环. Ni(OH)2 负极材料的十二烷基硫酸钠辅助制备及其储锂性能[J]. 材料研究学报, 2023, 37(6): 453-462.
[6] 余谟鑫, 张书海, 朱博文, 张晨, 王晓婷, 鲍佳敏, 邬翔. N掺杂生物炭的制备及其对Co2+ 的吸附性能[J]. 材料研究学报, 2023, 37(4): 291-300.
[7] 朱明星, 戴中华. SrSc0.5Nb0.5O3 改性BNT基无铅陶瓷的储能特性研究[J]. 材料研究学报, 2023, 37(3): 228-234.
[8] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[9] 周毅, 涂强, 米忠华. 制备方法对磷酸盐微晶玻璃结构和性能的影响[J]. 材料研究学报, 2023, 37(10): 739-746.
[10] 谢锋, 郭建峰, 王海涛, 常娜. ZnO/CdS/Ag复合光催化剂的制备及其催化和抗菌性能[J]. 材料研究学报, 2023, 37(1): 10-20.
[11] 余超, 邢广超, 吴郑敏, 董博, 丁军, 邸敬慧, 祝洪喜, 邓承继. 亚微米Al2O3 对重结晶碳化硅的作用机制[J]. 材料研究学报, 2022, 36(9): 679-686.
[12] 方向明, 任帅, 容萍, 刘烁, 高世勇. 自供能Ag/SnSe纳米管红外探测器的制备和性能研究[J]. 材料研究学报, 2022, 36(8): 591-596.
[13] 李福禄, 韩春淼, 高嘉望, 蒋健, 许卉, 李冰. 氧化石墨烯的变温发光[J]. 材料研究学报, 2022, 36(8): 597-601.
[14] 朱晓东, 夏杨雯, 喻强, 杨代雄, 何莉莉, 冯威. Cu掺杂金红石型TiO2 的制备及其光催化性能[J]. 材料研究学报, 2022, 36(8): 635-640.
[15] 熊庭辉, 蔡文汉, 苗雨, 陈晨龙. ZnO纳米棒阵列和薄膜的同步外延生长及其光电化学性能[J]. 材料研究学报, 2022, 36(7): 481-488.