Please wait a minute...
材料研究学报  2017, Vol. 31 Issue (7): 511-517    DOI: 10.11901/1005.3093.2016.394
  研究论文 本期目录 | 过刊浏览 |
金掺杂降低碳纳米管接触电阻的实验研究
刁加加1, 常春蕊2(), 张志明3, 张好强1, 孙红婵1, 安立宝1()
1 华北理工大学机械工程学院 唐山 063009
2 华北理工大学理学院 唐山 063009
3 华北理工大学材料科学与工程学院 唐山 063009
Reducin g Contact Resistance of Carbon Nanotubes by Au Doping
Jiajia DIAO1, Chunrui CHANG2(), Zhiming ZHANG3, Haoqiang ZHANG1, Hongchan SUN1, Libao AN1()
1 College of Mechanical Engineering, North China University of Science and Technology, Tangshan 063009, China
2 College of Science, North China University of Science and Technology, Tangshan 063009, China
3 College of Materials Science and Engineering, North China University of Science and Technology, Tangshan 063009, China
引用本文:

刁加加, 常春蕊, 张志明, 张好强, 孙红婵, 安立宝. 金掺杂降低碳纳米管接触电阻的实验研究[J]. 材料研究学报, 2017, 31(7): 511-517.
Jiajia DIAO, Chunrui CHANG, Zhiming ZHANG, Haoqiang ZHANG, Hongchan SUN, Libao AN. Reducin g Contact Resistance of Carbon Nanotubes by Au Doping[J]. Chinese Journal of Materials Research, 2017, 31(7): 511-517.

全文: PDF(2282 KB)   HTML
摘要: 

降低与金属之间的接触电阻是碳纳米管在微纳电子领域获得应用的前提,掺杂金纳米粒子可有效降低碳纳米管的接触电阻。本文采用高温焙烧在碳纳米管表面构造缺陷和亲水基团,然后将碳纳米管在氯金酸水溶液中超声浸泡以吸附氯金酸,再在氢气气氛下加热还原氯金酸为金。扫描电子显微(SEM)图片表明碳纳米管被成功地掺杂了金纳米粒子,X射线能量散射谱(EDS)和X射线光电子谱(XPS)表明金是唯一掺杂在碳纳米管上的粒子。掺杂后碳纳米管的拉曼光谱中G带波数降低说明对碳纳米管掺杂金为N型掺杂。N型掺杂剂将电子转移给邻近的碳原子,使碳纳米管中的电子数量增加,进而增强了碳纳米管的导电性。利用介电电泳法将碳纳米管组装到一对金电极之间,并使用精密电感电容电阻(LCR)测试仪实时测量。结果表明碳纳米管与金电极之间的接触电阻较掺杂前得到了有效改善,电阻值最大可降低近50%。

关键词 复合材料碳纳米管金纳米粒子掺杂接触电阻    
Abstract

A prerequisite for the application of carbon nanotubes (CNTs) in the industrial sectors of micro- and nano-electronics, it is essential to reduce its contact resistance with metal. Doping Au-nanoparticles can effectively reduce the contact resistance of CNTs. In this paper, a three step process was developed for doping Au-nanoparticles on CNTs, i.e. first, the CNTs are calcinated at high temperature to create defects and hydrophilic groups on their surface, then, the calcinated CNTs are dispersed ultrasonically in chloroauric acid solution to adsorb chloroauric acid, and finally, they are heated in hydrogen atmosphere at high temperature to produce Au-nanoparticles on the surface of CNTs. The produced CNTs are characterized by means of scanning electron microscopy (SEM) X-ray energy dispersive spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy. Results show that due to the Au-doping, the G-band peak of Raman spectra of the CNTs shifts to a lower frequency, which indicates that the doping is N-type. N-type dopants transfer electrons to adjacent carbon atoms and increase the electron quantity in CNTs, thereby increasing the electrical conductivity of CNTs. Subsequently, CNTs are assembled into the interval of two Au electrodes by dielectrophoresis (DEP), and the results of real-time measurement by using a precision inductance-capacitance-resistance (LCR) show that the contact resistance between the Au-doped CNTs and Au electrodes has been effectively reduced to ca. half of the original values between the bare CNTs and Au electrodes .

Key wordscomposite    carbon nanotube    Au nanoparticle    doping    contact resistance
收稿日期: 2016-07-09     
ZTFLH:  TB303  
基金资助:资助项目 国家自然科学基金(51172062,51472074)和华北理工大学研究生创新项目(2016S14)
作者简介:

作者简介 刁加加,女,1991年生,硕士生

图1  碳纳米管样品的SEM图片
图2  碳纳米管样品的EDS谱图
图3  MWNT-T-Au样品的XPS谱
图4  各碳纳米管样品的拉曼光谱图
图5  掺杂前后碳纳米管与电极间接触电阻的变化
[1] Meng T, Wang C Y, Wang S Y.First-principles study of contact between Ti surface and semiconducting carbon nanotube[J]. Journal of Applied Physics, 2007, 102(1): 013709-1
[2] Nemec N, Tománek D, Cuniberti G.Contact dependence of carrier injection in carbon nanotubes: an ab initio study[J]. Physical Review Letters, 2006, 96(7): 076802-1
[3] Tan M, Ye X, Wang X, et al.Improving contact of CNT-metal by annealing[J]. Journal of Functional Materials and Devices, 2008, 14(1): 227
[4] Asaka K, Karita M, Saito Y.Modification of interface structure and contact resistance between a carbon nanotube and a gold electrode by local melting[J]. Applied Surface Science, 2011, 257(7): 2850
[5] Chen C, Yan L, Kong E S, et al.Ultrasonic nanowelding of carbon nanotubes to metal electrodes[J]. Nanotechnology, 2006, 17(9): 2192
[6] Madsen D N, M?lhave K, Mateiu R, et al.Soldering of nanotubes onto microelectrodes[J]. Nano Letters, 2003, 3(1): 47
[7] Song X.Study on mechanism of carbon nanotube/metal interfacial bonding and related technology [D].Shanghai: Shanghai Jiao Tong University, 2010(宋晓辉. 碳纳米管/金属界面键合机制及其相关技术研究 [D]. 上海: 上海交通大学, 2010)
[8] Liu E K, Zhu B S, Luo J S, The Physics of Semiconductors (7th Edition) [M]. Beijing: Publishing House of Electronics Industry, 2011(刘恩科, 朱秉升, 罗晋生. 半导体物理学(第七版) [M]. 北京: 电子工业出版社, 2011)
[9] Kong B S, Jung D H, Oh S K, et al.Single-walled carbon nanotube gold nanohybrids: application in highly effective transparent and conductive films[J]. The Journal of Physical Chemistry C, 2007, 111(23): 8377
[10] Kim K K, Bae J J, Park H K, et al.Fermi level engineering of single-walled carbon nanotubes by AuCl3 doping[J]. Journal of the American Chemical Society, 2008, 130(38): 12757
[11] Kim S, Kulkarni D D, Rykaczewski K, et al.Fabrication of an ultralow-resistance ohmic contact to MWCNT - metal interconnect using graphitic carbon by electron beam-induced deposition (EBID)[J]. IEEE Transactions on Nanotechnology, 2012, 11(6):1223
[12] Tian C H.Catalyst performance of Pt-Sn/MWCNTs (modified) on the dehydrogenation of propane [D]. Shanghai: Shanghai Normal University, 2014(田春华. 多壁碳纳米管改性负载铂锡在丙烷脱氢反应中催化性能的研究 [D]. 上海: 上海师范大学, 2014)
[13] Skákalová V, Kaiser A B, Dettlaff-Weglikowska U, et al.Effect of chemical treatment on electrical conductivity, infrared absorption, and Raman spectra of single-walled carbon nanotubes[J]. The Journal of Physical Chemistry B, 2005, 109(15): 7174
[14] Rao A M, Eklund P C, Bandow S, et al.Evidence for charge transfer in doped carbon nanotube bundles from Raman scattering[J]. Nature, 1997, 388(6639): 257
[15] Lim S C, Jiang J H, Bae D J, et al.Contact resistance between metal an d carbon nanotube interconnects: effect of work function and wettability[J]. Applied Physics Letters, 2009, 95(26): 264103-1
[1] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] 刘瑞峰, 仙运昌, 赵瑞, 周印梅, 王文先. 钛合金/不锈钢复合板的放电等离子烧结技术制备及其性能[J]. 材料研究学报, 2023, 37(8): 581-589.
[3] 季雨辰, 刘树和, 张天宇, 查成. MXene在锂硫电池中应用的研究进展[J]. 材料研究学报, 2023, 37(7): 481-494.
[4] 王伟, 解泽磊, 屈怡珅, 常文娟, 彭怡晴, 金杰, 王快社. Graphene/SiO2 纳米复合材料作为水基润滑添加剂的摩擦学性能[J]. 材料研究学报, 2023, 37(7): 543-553.
[5] 张藤心, 王函, 郝亚斌, 张建岗, 孙新阳, 曾尤. 基于界面氢键结构的石墨烯/聚合物复合材料的阻尼性能[J]. 材料研究学报, 2023, 37(6): 401-407.
[6] 邵萌萌, 陈招科, 熊翔, 曾毅, 王铎, 王徐辉. C/C-ZrC-SiC复合材料的Si2+ 离子辐照行为[J]. 材料研究学报, 2023, 37(6): 472-480.
[7] 余谟鑫, 张书海, 朱博文, 张晨, 王晓婷, 鲍佳敏, 邬翔. N掺杂生物炭的制备及其对Co2+ 的吸附性能[J]. 材料研究学报, 2023, 37(4): 291-300.
[8] 张锦中, 刘晓云, 杨健茂, 周剑锋, 查刘生. 温度响应性双面纳米纤维的制备和性能[J]. 材料研究学报, 2023, 37(4): 248-256.
[9] 王刚, 杜雷雷, 缪自强, 钱凯成, 杜向博文, 邓泽婷, 李仁宏. 聚多巴胺改性碳纤维增强尼龙6复合材料的界面性能[J]. 材料研究学报, 2023, 37(3): 203-210.
[10] 林师峰, 徐东安, 庄艳歆, 张海峰, 朱正旺. TiZr基非晶/TC21双层复合材料的制备和力学性能[J]. 材料研究学报, 2023, 37(3): 193-202.
[11] 苗琪, 左孝青, 周芸, 王应武, 郭路, 王坦, 黄蓓. 304不锈钢纤维/ZL104铝合金复合泡沫的孔结构、力学、吸声性能及其机理[J]. 材料研究学报, 2023, 37(3): 175-183.
[12] 张开银, 王秋玲, 向军. FeCo/SnO2 复合纳米纤维的制备及其吸波性能[J]. 材料研究学报, 2023, 37(2): 102-110.
[13] 周聪, 昝宇宁, 王东, 王全兆, 肖伯律, 马宗义. (Al11La3+Al2O3)/Al复合材料的高温性能及其强化机制[J]. 材料研究学报, 2023, 37(2): 81-88.
[14] 罗昱, 陈秋云, 薛丽红, 张五星, 严有为. 钠离子电池双层碳包覆Na3V2(PO4)3 正极材料的超声辅助溶液燃烧合成及其电化学性能[J]. 材料研究学报, 2023, 37(2): 129-135.
[15] 闫春良, 郭鹏, 周靖远, 汪爱英. Cu掺杂非晶碳薄膜的电学性能及其载流子输运行为[J]. 材料研究学报, 2023, 37(10): 747-758.