Please wait a minute...
材料研究学报  2017, Vol. 31 Issue (6): 409-414    DOI: 10.11901/1005.3093.2016.267
  本期目录 | 过刊浏览 |
时效处理对Ti-3Al-8V-6Cr-4Mo-4Zr合金力学性能的影响
王雪萌,张思倩(),袁子尧,陈立佳
沈阳工业大学材料科学与工程学院 沈阳 110870
Effect of Heat Treatment on Mechanical Properties of Ti-3Al-8V-6Cr-4Mo-4Zr Alloy
Xuemeng WANG,Siqian ZHANG(),Ziyao YUAN,Lijia CHEN
School of Materials Science and Engineering, Shenyang University of Technology, Shenyang 110870, China
引用本文:

王雪萌,张思倩,袁子尧,陈立佳. 时效处理对Ti-3Al-8V-6Cr-4Mo-4Zr合金力学性能的影响[J]. 材料研究学报, 2017, 31(6): 409-414.
Xuemeng WANG, Siqian ZHANG, Ziyao YUAN, Lijia CHEN. Effect of Heat Treatment on Mechanical Properties of Ti-3Al-8V-6Cr-4Mo-4Zr Alloy[J]. Chinese Journal of Materials Research, 2017, 31(6): 409-414.

全文: PDF(6077 KB)   HTML
摘要: 

研究了固溶时效处理对Ti-3Al-8V-6Cr-4Mo-4Zr合金拉伸性能的影响。结果表明:在800℃/30 min+500℃/12 h处理后,合金的硬度和抗拉强度达到极大值,其延伸率和断面收缩率没有明显的降低。合金的硬度和强度的提高是ωα析出相共同作用的结果。在合金的热轧态和热处理态的断口都出现了大量的韧窝,表明其为典型的韧性断裂。

关键词 金属材料固溶时效处理拉伸性能断口    
Abstract

The effects of solution treatment and aging treatment on microstructures and mechanical properties of Ti-3Al-8V-6Cr-4Mo-4Zr alloy bars have been investigated. The results show that the highest hardness and the highest tensile strength can be achieved by the solution and aging treatment (800℃×30 min/AC+510℃×16 h/AC), and an insignificant decline on elongation rate and necking rate is also acquired. The quantity and size of the ω-phases and α-phases result in the increase of hardness and strength of Ti-3Al-8V-6Cr-4Mo-4Zr alloy bars. A lot of dimples exist in the tensile fractures of the hot rolling alloys and heat treatment alloysdemonstrating a typical ductile fracture.

Key wordsmetal materials    solution and aging treatment    tensile properties    tensile fracture
收稿日期: 2016-05-18     
基金资助:国家自然科学基金(51101160, 51501117),辽宁省教育厅项目(L2014050)
图1  Ti-3Al-8V-6Cr-4Mo-4Zr合金在350~550℃时效后的硬度
图2  原始态和不同热处理态Ti-3Al-8V-6Cr-4Mo-4Zr合金的SEM照片
σb/MPa σ0.2/MPa φ ψ
Hot rolling 1008.9 1002.4 21.96% 39.22%
800℃/30 min 958.0 954.2 16.33% 31.23%
800℃/30min +500℃/4 h 1205.2 1137.8 12.98% 16.94%
800℃/30min +500℃/12 h 1452.1 1436.9 12.75% 15.85%
800℃/30min +500℃/24 h 1440.2 1429.3 11.95% 14.87%
表1  Ti-3Al-8V-6Cr-4Mo-4Zr合金在不同状态下的拉伸性能
图3  Ti-3Al-8V-6Cr-4Mo-4Zr合金在不同状态下的拉伸断口照片
图4  Ti-3Al-8V-6Cr-4Mo-4Zr合金在不同状态下拉伸变形后的显微组织
图5  Ti-3Al-8V-6Cr-4Mo-4Zr合金经800℃/30 min+500℃/12 h处理后拉伸试样中位错的形貌
[1] Weiss I, Semiatin S L.Thermomechanical processing of beta titanium alloys-an overiew[J]. Mater. Sci. Eng., A. 1998, (243): 46
[2] Ibrahim K M, Mhaede M, Wagner L.Microstructure evolution and mechanical properties ofheat treated LCB titanium alloy[J]. Trans. Nonferrous Met. Soc. China. 2012, (22):2609
[3] Koch B, Skrotzki B.Strain controlled fatigue testing of the metastable β-titanium alloy Ti-6.8Mo-4.5Fe-1.5Al (Timetal LCB)[J]. Mater. Sci. Eng., A. 2011, (528): 5999
[4] Song Z Y, Sun Q Y, Xiao L, Sun J, Zhang L C.Precipitation behavior and tensile property of the stress-agedTi-10Mo-8V-1Fe-3.5Al alloy[J]. Mater. Sci. Eng., A. 2011, (528): 4111
[5] So?ek ? A, Krawczyk J.The analysis of the hot deformation behaviour of the Ti-3Al-8V-6Cr-4Zr-4Mo alloy, using processing maps, a map of microstructure and of hardness[J]. Mater. Des. 2015, (65): 165
[6] Hua K, Li J S, Kou H C, et al.Phase precipitation behavior during isothermal deformation inβ-quenched near beta titanium alloy Ti-7333[J]. J. Alloys Compd., 2016, (671): 381
[7] Santos P F, Niinomi M, Cho K, et al.Microstructures, mechanical properties and cytotoxicity of low cost betaTi-Mn alloys for biomedical applications[J]. Acta Biomater., 2015, (26): 366
[8] Fan J K, Li J S, Kou H C, et al.Influence of solutiontreatment on microstructure and mechanicalproperties of a nearβtitanium alloy Ti-7333[J]. Mater. Des., 2015, (83): 499
[9] Guo S, Zhang J S, Cheng X N, et al.A metastable β-type Ti-Nb binary alloy with low modulus and highstrength[J]. J. Alloys Compd., 2015, (644): 411
[10] Li L, Li M Q, Luo J.Mechanism in the b phase evolution during hot deformationof Ti-5Al-2Sn-2Zr-4Mo-4Cr with a transformed microstructure[J]. Acta Mater., 2015, (94): 36
[11] Cho K, Niinomi M, Nakai M, et al.Improvement in mechanical strength of low-cost β-type Ti-Mn alloysfabricated by metal injection molding through cold rolling[J]. J. Alloys Compd., 2016, (644): 272
[12] Dai S J, Wang Y, Chen F, et al.Effects of cold deformation on microstructure and mechanical properties of Ti-35Nb-9Zr-6Mo-4Sn alloy for biomedical applications[J]. Mater. Sci. Eng., A. 2013, (575): 35
[13] Yi R W, Liu H Q, Yi D Q, et al.Precipitation hardening and microstructure evolution of the Ti-7Nb-10Mo alloy during aging[J]. Mater. Sci. Eng., C. 2016, (63): 577
[14] Li C L, Mi X J, Ye W J, et al.Microstructural evolution and age hardening behavior of a new metastable beta Ti-2Al-9.2Mo-2Fe alloy[J]. Mater. Sci. Eng., A. 2015, (645): 225
[15] Xu T W, Zhang S S, Zhang F S, et al.Effect of ω-assistedprecipitationon β-α transformationandtensile properties of Ti-15Mo-2.7Nb-3Al-0.2Si alloy[J]. Mater. Sci. Eng., A. 2016, (654): 249
[16] Song L, Xu X J, You L, et al.Ordered ω phase transformations in Ti-45Al-8.5Nb-0.2B alloy[J]. Intermetallics., 2015, (65): 22
[17] Liu H H, Niinomi M, Nakai M, et al.Athermal and deformation-induced ω-phase transformations in biomedical beta-type alloy Ti-9Cr-0.2O[J]. Acta Mater., 2016, (106): 162
[18] Zain Y A, Kim H Y, Koyano T, et al.A comparative study on the effects of the ω and α phases on the temperaturedependence of shape memory behavior of a Ti-27Nb alloy[J]. Scr. Mater., 2015, (103): 37
[19] Ng H P, Douguet E, Bettles C J, et al.Age-hardening behaviour of two metastable beta-titanium alloys[J]. Mater. Sci. Eng., A. 2010, (527): 701
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] 刘天福, 张滨, 张均锋, 徐强, 宋竹满, 张广平. 缺口应力集中系数对TC4 ELI合金低周疲劳性能的影响[J]. 材料研究学报, 2023, 37(7): 511-522.