Please wait a minute...
材料研究学报  2020, Vol. 34 Issue (5): 328-336    DOI: 10.11901/1005.3093.2019.456
  研究论文 本期目录 | 过刊浏览 |
Fe-Cr-Ni系不锈钢在热老化和退火过程中铁素体调幅分解的相场法研究
史佳庆1, 薛飞2, 彭群家2, 沈耀1()
1.上海交通大学材料科学与工程学院 上海 200240
2.苏州热工研究院有限公司 苏州 215004
A Phase-Field Study on Spinodal Decomposition of Ferrite of Fe-Cr-Ni Stainless Steels during Thermal Ageing and Annealing
SHI Jiaqing1, XUE Fei2, PENG Qunjia2, SHEN Yao1()
1.School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
2.Suzhou Nuclear Power Research Institute, Suzhou 215004, China
引用本文:

史佳庆, 薛飞, 彭群家, 沈耀. Fe-Cr-Ni系不锈钢在热老化和退火过程中铁素体调幅分解的相场法研究[J]. 材料研究学报, 2020, 34(5): 328-336.
Jiaqing SHI, Fei XUE, Qunjia PENG, Yao SHEN. A Phase-Field Study on Spinodal Decomposition of Ferrite of Fe-Cr-Ni Stainless Steels during Thermal Ageing and Annealing[J]. Chinese Journal of Materials Research, 2020, 34(5): 328-336.

全文: PDF(2267 KB)   HTML
摘要: 

用基于Cahn-Hilliard方程的相场法研究了Fe-Cr-Ni系不锈钢中的铁素体在热老化和后续退火过程中调幅分解的演化过程,结果表明:在热老化过程中调幅分解生成相连的网络状α'相,调幅分解引起的Cr成分波动的波长和振幅都随着热老化时间的延长而增大;在随后的退火过程中α'相逐渐溶解而Cr成分波动的振幅迅速减小,但是波长继续增大。还讨论了热老化时的调幅分解对铁素体纳米压痕硬度的影响以及退火温度对调幅分解回复(α'相溶解)所需时间的影响,结果表明:铁素体的纳米压痕硬度主要与调幅分解的振幅有关,且随着振幅的增大而提高。同时,提高退火温度能显著缩短调幅分解回复所需的时间,退火回复时间与退火温度之间有Arrhenius形式的关系。

关键词 金属材料调幅分解相场模型热老化退火    
Abstract

In order to investigate the evolution of spinodal decomposition during ageing and annealing, a phase-field model based on Cahn-Hilliard equation has been developed to simulate the microstructure evolution in ferrite of Fe-Cr-Ni stainless steels. The simulation results reveal the formation of inter-connected α' phase during thermal ageing, and the increase of wavelength and amplitude of Cr concentration fluctuation with ageing time. During the subsequent annealing treatment, it is found that α' phase dissolves into the matrix, and the wavelength continues to increase, while the amplitude starts to decrease. The simulation results also indicate that the nano-indentation hardness is positively associated with the amplitude of concentration fluctuation. And the annealing time needed for recovery of spinodal decomposition (dissolving of α' phase) is reduced by increasing annealing temperature remarkably. There is an Arrhenius-type relation between the recovery time and the annealing temperature.

Key wordsmetallic materials    spinodal decomposition    phase-field method    thermal ageing    annealing
收稿日期: 2019-09-24     
ZTFLH:  TG142.1  
基金资助:国家重点研发计划(2017YFB0702201)
作者简介: 史佳庆,男,1994年生,博士生
DescriptionsParametersValues
Temperature/KT683(ageing), 823(annealing)[19]
Average Cr concentration in ferrite/%, atomic fractionc029.43[19]
Average Ni concentration in ferrite /%, atomic fractioncNi3.00[19]
Gas constant/J·mol-1·K-1R8.314
Molar volume /m3·mol-1Vm7.125×10-6
Fractional linear expansion per unit Cr compositionη0.00614[44]
Young's modulus/GPaE200
Poisson's ratioμ0.28
Interatomic distance/nmr00.2482[45]
Adjustable parameter related to diffusiond10.7
Diffusion coefficient of Fe/m2·s-1DFe1.0×10-4exp(-294?kJ?mol-1RT)[40]
Diffusion coefficient of Cr/m2·s-1DCr0.2×10-4exp(-308?kJ?mol-1RT)[40]
表1  相场模型使用的参数值
图1  模拟的热老化和退火不同时间的Cr浓度分布,图中的等值面为35% Cr(原子分数)
图2  文献[19]中APT实验测得的Cr元素分布
图3  模拟的Cr一维成分分布、频率分布与实验结果[19]的对比
图4  模拟的调幅分解波长随着热老化时间和退火时间的变化,图中星形为308L不锈钢的实验结果[19]
图5  模拟的调幅分解的振幅随热老化时间和退火时间的变化,图中的星形为308L不锈钢的实验结果[19]
图6  模拟的调幅分解波长和振幅随热老化时间的变化,图中星形为CF3M双相钢的实验结果[7]。注意此处c0=27.38%(原子分数),cNi=5.42%(原子分数),T=623 K
图7  使用式(9)计算出的铁素体屈服强度增量和文献[48]中铁素体纳米压痕硬度增量与热老化时间的关系
图8  模拟的不同退火温度下回复到初始状态所需要的退火时间随热老化时间的变化,以及热老化不同时间后退火回复时间的自然对数同退火绝对温度的倒数的关系
[1] Zhang B, Xue F, Li S L, et al. Non-uniform phase separation in ferrite of a duplex stainless steel [J]. Acta Mater., 2017, 140: 388
[2] Dong L, Han E H, Peng Q J, et al. Environmentally assisted crack growth in 308L stainless steel weld metal in simulated primary water [J]. Corros. Sci., 2017, 117: 1
[3] Brooks J A, Thompson A W. Microstructural development and solidification cracking susceptibility of austenitic stainless steel welds [J]. Int. Mater. Rev., 1991, 36(1): 16
[4] Wang W, Luo K L, Lu Y H. Microstructure of welding seam and its effect on propagation of microcracks in nuclear grade Z3CN20-09M stainless steel [J]. Chin. J. Mater. Res., 2014, 28(11): 809
[4] (王玮, 罗奎林, 陆永浩. 核级不锈钢Z3CN20-09M焊缝组织及对裂纹扩展的影响 [J]. 材料研究学报, 2014, 28(11): 809)
[5] Vitek J M, David S A, Alexander D J, et al. Low temperature aging behavior of type 308 stainless steel weld metal [J]. Acta Mater., 1991, 39(4): 503
[6] Takeuchi T, Kameda J, Nagai Y, et al. Study on microstructural changes in thermally-aged stainless steel weld-overlay cladding of nuclear reactor pressure vessels by atom probe tomography [J]. J. Nucl. Mater., 2011, 415(2): 198
[7] Pareige C, Novy S, Saillet S, et al. Study of phase transformation and mechanical properties evolution of duplex stainless steels after long term thermal ageing (>20 years) [J]. J. Nucl. Mater., 2011, 411(1-3): 90
[8] Vitek J M. G-phase formation in aged type 308 stainless steel [J]. Metall. Mater. Trans. A, 1987, 18(1): 154
[9] Danoix F, Auger P. Atom probe studies of the Fe-Cr system and stainless steels aged at intermediate temperature: a review [J]. Mater. Charact., 2000, 44(1-2): 177
[10] Soriano-Vargas O, Avila-Davila E O, Lopez-Hirata V M, et al. Effect of spinodal decomposition on the mechanical behavior of Fe-Cr alloys [J]. Mater. Sci. Eng. A, 2010, 527(12): 2910
[11] Chung H M, Leax T R. Embrittlement of laboratory and reactor aged CF3, CF8, and CF8M duplex stainless steels [J]. Mater. Sci. Technol., 1990, 6(3): 249
[12] Guo X F, Ni Y Y, Gong J M, et al. Formation of G-phase in 20Cr32Ni1Nb stainless steel and its effect on mechanical properties [J]. Acta Metall. Sin. (Engl. Lett.), 2017, 30(9: 829
[13] Mateo A, Palomino J L, Salan N, et al. Mechanical evaluation of a reversion heat treatment for a duplex stainless steel thermally embrittled [A]. Proceedings of the 11th Biennial European Conference on Fracture [C]. Warley, 1996
[14] Chung H M. Aging and life prediction of cast duplex stainless steel components [J]. Int. J. Pres. Ves. Pip., 1992, 50(1-3): 179
[15] Konosu S. Effect of reversion heat treatments on the mechanical properties of a 13% Cr steel subjected to 475℃ embrittlement [J]. Scr. Mater., 1992, 26(10): 1631
[16] Li S L, Zhang H L, Wang Y L, et al. Annealing induced recovery of long-term thermal aging embrittlement in a duplex stainless steel [J]. Mater. Sci. Eng. A, 2013, 564: 85
[17] Ding X P, Liu X, He Y L, et al. Evolution of precipitated phase during aging treatment in 316L austenitic stainless steel [J]. Chin. J. Mater. Res., 2009, 23(3): 269
[17] (丁秀平, 刘雄, 何燕霖等. 316L奥氏体不锈钢中时效条件下析出相演变行为的研究 [J]. 材料研究学报, 2009, 23(3): 269)
[18] Takeuchi T, Kameda J, Nagai Y, et al. Microstructural changes of a thermally aged stainless steel submerged arc weld overlay cladding of nuclear reactor pressure vessels [J]. J. Nucl. Mater., 2012, 425(1-3): 60
[19] Lin X D, Peng Q J, Han E H, et al. Effect of annealing on microstructure of thermally aged 308L stainless steel weld metal [J]. Acta Metall. Sin., 2019, 55(5): 555
[19] (林晓冬, 彭群家, 韩恩厚等. 退火对热老化308L不锈钢焊材显微结构的影响 [J]. 金属学报, 2019, 55(5): 555)
doi: 10.11900/0412.1961.2018.00365
[20] Kato M. Hardening by spinodally modulated structure in bcc alloys [J]. Acta Mater., 1981, 29(1): 79
[21] Park K H, LaSalle J C, Schwartz L H, et al. Mechanical properties of spinodally decomposed Fe-30wt% Cr alloys: Yield strength and aging embrittlement [J]. Acta Mater., 1986, 34(9): 1853
[22] Shamanth V, Ravishankar K S. Dissolution of alpha-prime precipitates in thermally embrittled S2205-duplex steels during reversion-heat treatment [J]. Results Phys., 2015, 5: 297
[23] Xu X, Westraadt J E, Odqvist J, et al. Effect of heat treatment above the miscibility gap on nanostructure formation due to spinodal decomposition in Fe-52.85 at% Cr [J]. Acta Mater., 2018, 145: 347
[24] Ujihara T, Osamura K. Kinetic analysis of spinodal decomposition process in Fe-Cr alloys by small angle neutron scattering [J]. Acta Mater., 2000, 48(7): 1629
[25] Leax T R, Brenner S S, Spitznagel J A. Atom probe examination of thermally ages CF8M cast stainless steel [J]. Metall. Mater. Trans. A, 1992, 23(10): 2725
[26] Danoix F, Auger P, Chambreland S, et al. A 3D study of G-phase precipitation in spinodally decomposed α-ferrite by tomographic atom-probe analysis [J]. Microsc. Microanal. Microstruct., 1994, 5(2): 121
[27] Fujii K, Fukuya K. Effects of radiation on spinodal decomposition of ferrite in duplex stainless steel [J]. J. Nucl. Mater., 2013, 440(1-3): 612
[28] Cahn J W. On spinodal decomposition [J]. Acta Mater., 1961, 9(9): 795
[29] Miller M K, Hyde J M, Hetherington M G, et al. Spinodal decomposition in Fe-Cr alloys: Experimental study at the atomic level and comparison with computer models-I. Introduction and methodology [J]. Acta Mater., 1995, 43(9): 3385
[30] Li Y S, Li S X, Zhang T Y. Effect of dislocations on spinodal decomposition in Fe-Cr alloys [J]. J. Nucl. Mater., 2009, 395(1-3): 120
[31] Li Y S, Zhu H, Zhang L, et al. Phase decomposition and morphology characteristic in thermal aging Fe-Cr alloys under applied strain: A phase-field simulation [J]. J. Nucl. Mater., 2012, 429(1-3): 13
[32] Emo J, Pareige C, Saillet S, et al. Kinetics of secondary phase precipitation during spinodal decomposition in duplex stainless steels: A kinetic Monte Carlo model - Comparison with atom probe tomography experiments [J]. J. Nucl. Mater., 2014, 451(1-3): 361
[33] Theus G J, Weeks J R. Environmental Degradation of Materials in Nuclear Power Systems-Water Reactors [M]. Pennsylvania: The Metallurgical Society of AIME, 1988
[34] Miller M K, Anderson I M, Bentley J, et al. Phase separation in the Fe-Cr-Ni system [J]. Appl. Surf. Sci., 1996, 94: 391
[35] Cahn J W, Hilliard J E. Free energy of a nonuniform system. I. Interfacial free energy [J]. J. Chem. Phys., 1958, 28(2): 258
[36] Dinsdale A T. SGTE data for pure elements [J]. CALPHAD, 1991, 15(4): 317
[37] Miettinen J. Thermodynamic reassessment of Fe-Cr-Ni system with emphasis on the iron-rich corner [J]. CALPHAD, 1999, 23(2): 231
[38] Andersson J O, Agren J. Models for numerical treatment of multicomponent diffusion in simple phases [J]. J. Appl. Phys., 1992, 72(4): 1350
doi: 10.1063/1.351745
[39] Wheeler A A, Boettinger W J, McFadden G B. Phase-field model for isothermal phase transitions in binary alloys [J]. Phys. Rev. A, 1992, 45(10): 7424
doi: 10.1103/PhysRevA.45.7424
[40] Dieter G E, Bacon D J. Mechanical Metallurgy [M]. New York: McGraw-Hill, 1986
[41] Rothman S J, Nowicki L J, Murch G E. Self-diffusion in austenitic Fe-Cr-Ni alloys [J]. J. Phys. F, 1980, 10(3): 383
[42] Honjo M, Saito Y. Numerical simulation of phase separation in Fe-Cr binary and Fe-Cr-Mo ternary alloys with use of the Cahn-Hilliard equation [J]. ISIJ Int., 2000, 40(9): 914.
[43] COMSOL Multiphysics software. Version 5.3. Stockholm (Sweden): COMSOL Inc. 2017
[44] Mehrer H, Stolica N. Diffusion in Solid Metals and Alloys [M]. Berlin: Springer, 1990
[45] Pareige C, Emo J, Saillet S, et al. Kinetics of G-phase precipitation and spinodal decomposition in very long aged ferrite of a Mo-free duplex stainless steel [J]. J. Nucl. Mater., 2015, 465: 383
[46] Hyde J M, Miller M K, Hetherington M G, et al. Spinodal decomposition in Fe-Cr alloys: Experimental study at the atomic level and comparison with computer models-II. Development of domain size and composition amplitude [J]. Acta Mater., 1995, 43(9): 3403
[47] Li S, Wang Y, Li S, et al. Microstructures and mechanical properties of cast austenite stainless steels after long-term thermal aging at low temperature [J]. Mater. Des., 2013, 50: 886
[48] Lin X, Peng Q J, Han E H, et al. Assessment of thermal aging of austenitic stainless steel weld metal by using the double loop electrochemical potentiokinetic reactivation technique [J]. Corrosion, 2018, 75(4): 377
[49] Liu X, Wang R, Ren A, et al. Evaluation of radiation hardening in ion-irradiated Fe based alloys by nanoindentation [J]. J. Nucl. Mater., 2014, 444(1-3): 1
[50] Tabor D. The physical meaning of indentation and scratch hardness [J]. Br. J. Appl. Phys., 1956, 7(5): 159
[51] Pumphrey P H, Akhurst K N. Aging kinetics of CF3 cast stainless steel in temperature range 300~400℃ [J]. Mater. Sci. Technol., 1990, 6(3): 211
doi: 10.1179/mst.1990.6.3.211
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] 刘天福, 张滨, 张均锋, 徐强, 宋竹满, 张广平. 缺口应力集中系数对TC4 ELI合金低周疲劳性能的影响[J]. 材料研究学报, 2023, 37(7): 511-522.