Please wait a minute...
材料研究学报  2020, Vol. 34 Issue (4): 247-253    DOI: 10.11901/1005.3093.2019.453
  研究论文 本期目录 | 过刊浏览 |
纵向变厚度EH40钢板的组织和性能
李广龙1,2(), 李靖年3, 李文斌1,2, 严玲1,2, 张鹏1,2, 王晓航1,2
1.海洋装备用金属材料及其应用国家重点实验室 鞍山 114009
2.鞍钢集团钢铁研究院 鞍山 114009
3.鞍钢股份有限公司鲅鱼圈钢铁分公司 营口 115007
Microstructure and Properties of Longitudinally Profiled EH40 Steel Plate
LI Guanglong1,2(), LI Jingnian3, LI Wenbin1,2, YAN Ling1,2, ZHANG Peng1,2, WANG Xiaohang1,2
1.State Key Laboratory of Metal Materials for Marine Equipment and Applications, Anshan 114009, China
2.Ansteel Iron & Steel Research Institute, Anshan 114009, China
3.Bayuquan Iron & Steel Subsidiary Company of Angang Steel Co. Ltd. , Yingkou 115007, China
引用本文:

李广龙, 李靖年, 李文斌, 严玲, 张鹏, 王晓航. 纵向变厚度EH40钢板的组织和性能[J]. 材料研究学报, 2020, 34(4): 247-253.
Guanglong LI, Jingnian LI, Wenbin LI, Ling YAN, Peng ZHANG, Xiaohang WANG. Microstructure and Properties of Longitudinally Profiled EH40 Steel Plate[J]. Chinese Journal of Materials Research, 2020, 34(4): 247-253.

全文: PDF(8963 KB)   HTML
摘要: 

采用拉伸、冲击、硬度、OM和TEM等方法研究纵向变厚度EH40钢板的组织和性能。结果表明,由于EH40钢板的薄端和厚端的制备工艺过程不同,其纵向的组织和性能呈现多样化;随着钢板厚度的增加屈服强度由534 MPa降低至489 MPa,抗拉强度由599 MPa降低至569 MPa。在-60℃进行冲击实验时,钢板薄端的冲击吸收能量大于200 J,而厚端的冲击吸收能量出现波动。钢板厚端的晶粒尺寸比薄端的粗大,贝氏体的含量低。在30 mm和40 mm位置全厚度都有贝氏体组织,厚度为8 mm时50 mm位置的贝氏体组织全部消失。薄端和厚端的析出相均为(Nb,Ti)C,但是薄端析出相的数量多、尺寸小,厚端析出相的数量少、尺寸大。

关键词 金属材料纵向变厚度钢板压下率终轧温度冷却速度组织分布    
Abstract

The microstructure and mechanical properties of the longitudinally profiled EH40 steel plate with the specification of (30~50) mm×2600 mm×3000 mm were investigated by means of tensile test, impact test, hardness test, optical microscope and TEM. Results show that the microstructure and mechanical properties of the longitudinally profiled steel plate is diverse due to the experienced different processes of the thin end and thick end. As the thickness of the steel plate increases the yield strength decreases from 534 MPa to 489 MPa, while the tensile strength decreases from 599 MPa to 569 MPa. When the impact temperature is -60oC, the absorb energy is over 200 J for the thin end of steel plate, while the absorb energy fluctuates for the thick end. The grains of the thick end with lower bainite content are larger than those of the thin end. There is Bainite within the full cross section for where with the plates of 30 mm and 40 mm in thickness. However, all the bainite disappeared for where with the plates of 8 mm and 50 mm in thickness. The precipitated phases of both the thin ends and thick ends are (Nb, Ti)C. For the plate at the thin ends, there exists large amount of precipitated phases with small particle size, whereas small amount of precipitated phases with large size for that at the thick ends.

Key wordsmetallic materials    longitudinally profiled steel plate    reduction ratio    finishing temperature    cooling rate    microstructure distribution
收稿日期: 2019-09-23     
ZTFLH:  TG142.1  
基金资助:国家重点研发计划(No. 2016YFF0202200);“十三五”国家重点专项(No. 2018YFC0705503-5)
作者简介: 李广龙,男,1985年生,高级工程师
图1  LP钢板纵向形状示意图
LocationTensile propertiesKv2/J
ReH/MPaRm/MPaA/%-20℃-40℃-60℃
ThinNear surface53459922.5297326301291289315276229252
MiddleNear surface51559025.5283300295280282290210225243
ThickNear surface50458625.028029729025928629524581187
Center48956927.527927328327526227017634151
Standard≥390510~660≥20.0≥41
表1  LP钢板的力学性能
图2  LP钢板不同位置的拉伸性能
图3  LP钢板不同位置不同温度的冲击功曲线
图4  LP钢板不同位置截面的硬度
图5  LP钢板不同位置处的金相组织
图6  钢板薄端和厚端的透射电镜照片
[1] Du P, Hu X L, Wang J, et al. Development and application of longitudinal profiled plate [J]. Steel Roll., 2008, 25(1): 47
[1] (杜平, 胡贤磊, 王君等. 纵向变截面钢板的发展和应用 [J]. 轧钢, 2008, 25(1): 47)
[2] Fukumoto Y, Takaku T, Aoki T, et al. Innovative use of profiled steel plates for seismic structural performance [J]. Adv. Struct. Eng., 2005, 8: 247
[3] Aoki A, Takaku T, Fukumoto Y, et al. Experimental investigation for seismic performance of framed structures having longitudinally profiled plates [J]. J. Construct. Steel Res., 2008, 64: 875
[4] Fukumoto Y, Nagai M. Steel bridges: New steels and innovative erection methods [J]. Prog. Struct. Eng. Mater., 2000, 2: 34
[5] Suzuki S, Muraoka R, Obinata T, et al. Steel products for shipbuilding [J]. JFE Technical Report, 2004, 2: 41
[6] Du P, Hu X L, Wang J, et al. Rolling parameters for longitudinal profiled plate rolling process [J]. J. Iron. Steel Res., 2008, 20(12): 26
[6] (杜平, 胡贤磊, 王君等. 纵向变截面轧制过程中的轧制参数 [J]. 钢铁研究学报, 2008, 20(12): 26)
[7] Wang Y Q, Liu X L, Liu M, et al. Experimental research on mechanical properties of longitudinally profiled steel plate [J]. Steel Construct., 2017, 32(4): 16
[7] (王元清, 刘晓玲, 刘明等. 纵向变厚度钢板力学性能试验研究 [J]. 钢结构, 2017, 32(4): 16)
[8] Zhang K, Zhao S Y, Sui F L, et al. Effect of finish rolling temperature on microstructure evolution and hardness of Ti-V-Mo complex microalloyed steel [J]. Chin. J. Mater. Res., 2019, 33(3): 191
[8] (张可, 赵时雨, 隋凤利等. 终轧温度对Ti-V-Mo复合微合金钢组织演变和硬度的影响 [J]. 材料研究学报, 2019, 33(3): 191)
[9] Saastamoinen A, Kaijalainen A, Porter D, et al. The effect of finish rolling temperature and tempering on the microstructure, mechanical properties and dislocation density of direct-quenched steel [J]. Mater. Charact., 2018, 139: 1
[10] Duan L N, Chen Y, Liu Q Y, et al. Effect of thermo-mechanical control process on microstructure of high strength X100 pipeline steel [J]. Chin. J. Mater. Res., 2014, 28: 51
[10] (段琳娜, 陈宇, 刘清友等. 控轧控冷工艺对高强度X100管线钢组织的影响 [J]. 材料研究学报, 2014, 28: 51)
[11] Efron L I, Morozov Y D, Goli-Oglu E A. Influence of rolling temperature on the austenite structure and properties of low-carbon microalloyed steel [J]. Steel Transl., 2012, 42: 456
[12] Sun F Y, Xu W C. Calculation of yield strength of Nb-V microalloy steel controlled-rolled into dual-phase γ+α [J]. Acta Metall. Sin., 1986, 22: 115
[13] Kong C M, Cai Q W, Yu W. Analysis of precipitation phase in grade X70 pipeline steel [J]. J. Mater. Metall., 2004, 3: 67
[13] (孔萃敏, 蔡庆伍, 余伟. X70管线钢中析出相的分析 [J]. 材料与冶金学报, 2004, 3: 67)
[14] Xie B S, Cai Q W, Yu W, et al. Influence of fast cooling on properties of a Q420E plate steel [J]. Trans. Mater. Heat Treat., 2014, 35(3): 97
[15] Chen C Y, Chen C C, Yang J R. Microstructure characterization of nanometer carbides heterogeneous precipitation in Ti-Nb and Ti-Nb-Mo steel [J]. Mater. Charact., 2014, 88: 69
[16] Okamoto R, Borgenstam A, Ågren J. Interphase precipitation in niobium-microalloyed steels [J]. Acta Mater., 2010, 58: 4783
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] 刘天福, 张滨, 张均锋, 徐强, 宋竹满, 张广平. 缺口应力集中系数对TC4 ELI合金低周疲劳性能的影响[J]. 材料研究学报, 2023, 37(7): 511-522.