Please wait a minute...
材料研究学报  2020, Vol. 34 Issue (1): 21-28    DOI: 10.11901/1005.3093.2019.428
  研究论文 本期目录 | 过刊浏览 |
显微带细化组织和两相组织对低Cr合金钢高温断裂行为的影响
程磊(),余伟,蔡庆伍
北京科技大学 工程技术研究院 北京 100083
Influence of Microbands Refined Microstructure and Two Phase Microstructure on High Temperature Fracture Behaviors of a Low Cr Alloy Steel
CHENG Lei(),YU Wei,CAI Qingwu
Institute of Engineering Technology, University of Science and Technology Beijing, Beijing 100083, China
引用本文:

程磊,余伟,蔡庆伍. 显微带细化组织和两相组织对低Cr合金钢高温断裂行为的影响[J]. 材料研究学报, 2020, 34(1): 21-28.
Lei CHENG, Wei YU, Qingwu CAI. Influence of Microbands Refined Microstructure and Two Phase Microstructure on High Temperature Fracture Behaviors of a Low Cr Alloy Steel[J]. Chinese Journal of Materials Research, 2020, 34(1): 21-28.

全文: PDF(6718 KB)   HTML
摘要: 

针对低Cr合金钢进行轧制工艺设计,分别制备出显微带细化的1#组织和以马氏体/铁素体为特征的2#组织,在550℃、650℃、750℃对其进行高温拉伸实验。拉伸曲线和断后组织的分析结果表明,温度的升高和应变速率的减小能够促进再结晶过程,最终不但导致抗拉强度的降低,同时也减弱了组织内部滑移系统对亚结构界面运动的影响;然而具有2#两相组织的钢板其650℃的抗拉强度却比550℃的高。对组织和析出状态分析后认为,650℃变形时铁素体晶粒中大量形成的M7C3析出物显著提高了铁素体基体的强度,进而通过平衡其与回火马氏体之间的性能关系,使拉伸性能得以改善。

关键词 金属材料析出强化高温拉伸显微带    
Abstract

Two kinds of microstructure, namely the microbands refined microstructure and the martensite-ferrite two phase microstructure, were obtained for a low Cr alloy steel by using different rolling technologies, then the fracture behavior of the steel under different tensile conditions was investigated. Analysis of the strain-stress curves and the microstructures after deformation show that the increase of rolling temperature and the decrease of strain rate could reduce the tensile strength, meanwhile, the enhancing recrystallization process can release the constraint of interior slip systems on the motion of subboundaries. Abnormal increase of tensile strength at 650℃ for the two phase microstructure can be attributed to the numerous precipitation of M7C3 in the ferritic matrix, which balances the mechanical properties between ferrite and annealed martensite, therefore improves the tensile strength at 650℃.

Key wordsmetallic materials    precipitation strengthening    high temperature tension    microbands
收稿日期: 2019-09-02     
ZTFLH:  TG335.11  
基金资助:国家自然科学基金(51274036);中国博士后科学基金(2019TQ0028)
作者简介: 程磊,男,1991年生,博士
CSiMnCrTiMoSPFe
0.090.241.492.200.110.290.010.005Bal.
表1  低Cr合金钢的化学成分
图1  工艺1、工艺2的轧制路径和拉伸试样的尺寸特征
图2  (a)为工艺1轧后得到显微带细化的铁素体组织,(b)为工艺2得到的应变诱导相变细化等轴铁素体和马氏体两相组织,(c)和(d)为由EBSD所得的对应原始组织
图3  (a)和(b)分别为1#显微带细化组织和2#两相组织在550℃、650℃、750℃和650℃低应变速率(10-4 s-1)条件下的拉伸曲线;(c)和(d)为对应变形条件的加工硬化率
图4  显微带细化组织(a, b, d)和两相组织(c, d)在不同温度下的拉伸断口(应变速率均为10-3),组织类型和拉伸温度分别在图右上角标出;(e)为标准bcc结构的织构分布示意图以及两种组织的原始织构特征
图5  距拉伸断口1 mm处的组织特征,左侧(a, c, e, g)和右侧(b, d, f, h)初始分别为1#组织和2#组织,相应 拉伸条件在图右上角标出
图6  2#组织550℃拉伸后的组织(a)、对应区域的电解抛光表面(b)、在550℃拉伸后铁素体内的析出状态(c)、在650℃拉伸后铁素体内的析出状态(d)以及在650℃低应变速率10-4拉伸后熟化析出物的EDS表征(e)
[1] Shi Y L, Zuo Y, Meng Y R. Historical track and prospect of China's thermal power industry [J]. Sci. Technol. Manag. Res., 2017, 37(16): 136
[1] (施应玲, 左艺, 孟雅儒. 中国火电产业的历史轨迹与发展展望 [J]. 科技管理研究, 2017, 37(16): 136)
[2] Liu R W, Xiao P, Zhong L, et al. Research progress of advanced 700℃ ultra-supercritical coal-fired power generation technology [J]. Therm. Power Generat., 2017, 46(9): 1
[2] (刘入维, 肖 平, 钟 犁等. 700℃超超临界燃煤发电技术研究现状 [J]. 热力发电, 2017, 46(9): 1)
[3] Di Gianfrancesco A. Materials for Ultra-Supercritical and Advanced Ultra-Supercritical Power Plants [M]. Duxford: Woodhead Publishing, 2017: 82
[4] Sha W S, Wang W W, Yang K Y, et al. 9-12Cr Heat-resistant Steels [M]. Cham: Springer, 2015: 27
[5] Pandey C, Mahapatra M M, Kumar P, et al. Some studies on P91 steel and their weldments [J]. J. Alloys Compd., 2018, 743: 332
[6] Wang H, Yan W, Van Zwaag S, et al. On the 650℃ thermostability of 9-12Cr heat resistant steels containing different precipitates [J]. Acta Mater., 2017, 134: 143
[7] Xu Y T, Nie Y H, Wang M J, et al. The effect of microstructure evolution on the mechanical properties of martensite ferritic steel during long-term aging [J]. Acta Mater., 2017, 131: 110
[8] Sakai T, Belyakov A, Kaibyshev R, et al. Dynamic and post-dynamic recrystallization under hot, cold and severe plastic deformation conditions [J]. Prog. Mater. Sci., 2014, 60: 130
[9] Cheng L, Yu W, Cai Q W, et al. Effects of prior microstructures and deformation parameters on the ultra-refining uniformity of Ti-Mo ferritic steel [J]. Mater. Sci. Eng., 2018, 733A: 108
[10] Cheng L, Cai Q W, Dong E T, et al. Influence of ferrite matrix and precipitation status on the mechanical properties of low carbon low alloy steel during high temperature tension [J]. Mater. Sci. Eng., 2016, 678A: 1
[11] Park H W, Yanagimoto J. Formation and mechanical properties of bimodal microstructures in 0.2% carbon steel by heavy-reduction hot/warm compression [J]. Procedia Eng., 2014, 81: 462
[12] Eghbali B. Study on the ferrite grain refinement during intercritical deformation of a microalloyed steel [J]. Mater. Sci. Eng., 2010, 527A: 3407
[13] Cheng L, Chen Y L, Cai Q W, et al. Precipitation enhanced ultragrain refinement of Ti-Mo microalloyed ferritic steel during warm rolling [J]. Mater. Sci. Eng., 2017, 698A: 117
[14] Choi J K, Seo D H, Lee J S, et al. Formation of ultrafine ferrite by strain-induced dynamic transformation in plain low carbon steel [J]. ISIJ Int., 2003, 43: 746
[15] Cheng L, Cai Q W, Lv J L, et al. Superdense microbands strengthening of textured low alloy ferritic steel [J]. J. Alloys Compd., 2018, 746: 482
[16] Yanushkevich Z, Belyakov A, Kaibyshev R. Microstructural evolution of a 304-type austenitic stainless steel during rolling at temperatures of 773-1273K [J]. Acta Mater., 2015, 82: 244
[17] Yan H T, Bi H Y, Li X, et al. Microstructure and texture of Nb+Ti stabilized ferritic stainless steel [J]. Mater. Charact., 2008, 59: 1741
[18] Hosford W F. Mechanical Behavior of Materials [M]. Cambridge: Cambridge University Press, 2010: 133
[19] De Geus T W J, Maresca F, Peerlings R H J, et al. Microscopic plasticity and damage in two-phase steels: On the competing role of crystallography and phase contrast [J]. Mech. Mater., 2016, 101: 147
[20] Li Y C, Yan W, Cotton J D, et al. A new 1.9 GPa maraging stainless steel strengthened by multiple precipitating species [J]. Mater. Des., 2015, 82: 56
[21] Funakawa Y, Shiozaki T, Tomita K, et al. Development of high strength hot-rolled sheet steel consisting of ferrite and nanometer-sized carbides [J]. ISIJ Int., 2004, 44: 1945
[22] Jayan V, Khan M Y, Husain M. Coarsening of nano sized carbide particles in 2.25Cr-1Mo power plant steel after extended service [J]. Mater. Lett., 2004, 58: 2569
[23] Verma P, Basu J, Srinivas N C S, et al. Deformation behavior of modified 9Cr-1Mo steel under low cycle fatigue at 600℃ [J]. Mater. Charact., 2017, 131: 244
[24] Jang J H, Lee C H, Heo Y U, et al. Stability of (Ti, M)C (M=Nb, V, Mo and W) carbide in steels using first-principles calculations [J]. Acta Mater., 2012, 60: 208
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] 刘天福, 张滨, 张均锋, 徐强, 宋竹满, 张广平. 缺口应力集中系数对TC4 ELI合金低周疲劳性能的影响[J]. 材料研究学报, 2023, 37(7): 511-522.