Please wait a minute...
材料研究学报  2020, Vol. 34 Issue (3): 161-168    DOI: 10.11901/1005.3093.2019.403
  研究论文 本期目录 | 过刊浏览 |
反应型有机修饰剂对环氧树脂/粘土纳米复合材料热/机械性能的影响
陈斌1(),裴鑫鹏1,徐扬1,张英2()
1. 沈阳化工大学材料科学与工程学院 沈阳 110142
2. 沈阳化工大学应用化学学院 沈阳 110142
Effect of Reactive Organic Modifiers on Thermal/Mechanical Properties of Epoxy/Clay Nanocomposites
CHEN Bin1(),PEI Xinpeng1,XU Yang1,ZHANG Ying2()
1. School of Materials Science and Engineering, Shenyang University of Chemical Technology, Shenyang 110142, China
2. School of Applied Chemistry, Shenyang University of Chemical Technology, Shenyang 110142, China
引用本文:

陈斌,裴鑫鹏,徐扬,张英. 反应型有机修饰剂对环氧树脂/粘土纳米复合材料热/机械性能的影响[J]. 材料研究学报, 2020, 34(3): 161-168.
Bin CHEN, Xinpeng PEI, Yang XU, Ying ZHANG. Effect of Reactive Organic Modifiers on Thermal/Mechanical Properties of Epoxy/Clay Nanocomposites[J]. Chinese Journal of Materials Research, 2020, 34(3): 161-168.

全文: PDF(2499 KB)   HTML
摘要: 

使带有环氧基团的三缩水甘油基对氨基苯酚(TGPAP)分别与溴代正丁烷(BB)、2-溴乙醇(BE)反应,合成了反应型粘土有机修饰剂溴化(正定烷基)双环氧基(4-环氧醚基)铵(TGPAPB)和溴化(2-羟乙基)双环氧基(4-环氧醚基)铵(TGPAPE)。用这两种修饰剂改性粘土,分别制备出具有相同反应官能团但与环氧树脂的相容性略有不同的两种有机化粘土(B-Clay和E-Clay)。再用“粘土淤浆复合法”制备出两种环氧树脂/粘土纳米复合材料,研究了两种反应型有机修饰剂对纳米复合材料的结构和性能的影响。结果表明:带有羟基的E-Clay以高度无规剥离形式均匀分布在环氧树脂基体中;而B-Clay则形成了无规剥离/插层混合结构。两种粘土均参与固化反应在环氧树脂基体和粘土片层间产生了较强的界面作用力,从而显著提高了纳米复合材料的拉伸强度。粘土质量分数为3%的两种纳米复合材料,其拉伸强度分别达到32.4 MPa(E-Clay)和28.0 MPa(B-Clay),比对应的纯环氧树脂聚合物分别提高了76.47%和52.51%。同时,这两种纳米复合材料的玻璃化转变温度(Tg)也略有提高。

关键词 有机高分子材料环氧树脂粘土有机修饰剂纳米复合材料界面作用力    
Abstract

Two reactive organic modifiers were firstly synthesized by reaction of triglycidyl p-aminophenol (TGPAP) with bromo-n-butane (BB) and 2-bromoethanol (BE) respectively. By using the two modifiers, two different types of organic clays (B-Clay and E-Clay) with the same reactive functional groups but different in compatibility with epoxy were prepared. Epoxy/clay nanocomposites were then synthesized with the above two organoclay via "clay-slurry compounding method''. The effect of two reactive organic modifiers on the structure and thermal/mechanical properties of the nanocomposites was studied. It is shown that E-Clay gave a highly exfoliated structure in epoxy matrix because of its better compatible with epoxy pre-polymer, while B-Clay presented an exfoliated/intercalated mixed structure. Remarkable improvement in tensile strength and modulus were obtained for the nanocomposites due to the formation of strong interfacial bonding between epoxy matrix and clay layers, which derived from reactions of organic modifiers on the organoclay with curing agent during curing. For the nano-composite with incorporation of 3.0% clay, the tensile strength and modulus enhanced by 76.47% and 258% for E-Clay respectively, while that with B-Clay were 52.51% and 236.92%. Besides, the glass transition temperature (Tg) of the two type of nanocomposites was marginally improved relative to neat epoxy resin.

Key wordsorganic polymer materials    epoxy    clay    nanocomposites    interface    mechanical properties
收稿日期: 2019-08-16     
ZTFLH:  TQ323.5  
基金资助:国家自然科学基金(20974064);2017年辽宁省博士科研启动基金指导计划(20170520152)
作者简介: 陈斌,男,1963年生,教授
图1  有机修饰剂的合成路线
图2  原始粘土、B-Clay和E-Clay的红外光谱
图3  原始粘土、E-Clay及E-Clay-g-D230的热失重曲线
图4  环氧树脂/粘土纳米复合材料的TEM照片
图5  制备环氧树脂/粘土纳米复合材料各个阶段产物的XRD谱图
图6  环氧树脂/粘土纳米复合材料的应力-应变曲线
Sample (mass fraction)Tensile strength/MPaStrain at break/%Modulus/MPaTg/℃
Neat epoxy18.36±0.4790.33±2.01371.66±2.6247.99
1% B-Clay22.70±0.2151.00±0.81665.33±17.9850.14
2% B-Clay25.23±0.2348.50±2.50843.50±26.81-
3% B-Clay28.00±0.8340.66±1.541026±16.9952.22
3.5% B-Clay24.21±0.1231.00±2.161187.5±63.36-
1% E-Clay21.13±0.1745.50±0.50755.33±15.1749.87
2% E-Clay29.66±0.4141.20±1.80858.5±19.01-
3% E-Clay32.40±0.7325.50±1.501063.33±38.5851.51
3.5% E-Clay27.20±0.5420.66±0.471286.66±49.21-
表1  纯环氧树脂及环氧树脂/粘土纳米复合材料的拉伸和热机械性能
图7  纯环氧树脂及其纳米复合材料的tanδ与温度的关系
[1] Pavlidou S, Papaspyrides C D. A review on polymer-layered silicate nanocomposites [J]. Prog. Polym. Sci., 2008, 33: 1119
[2] Okada A, Usuki A. Twenty years of polymer-clay nanocomposites [J]. Macromol. Mater. Eng., 2006, 291: 1449
[3] Kotal M, Bhowmick A K. Polymer nanocomposites from modified clays: Recent advances and challenges [J]. Prog. Polym. Sci., 2015, 51: 127
[4] Lu H J, Liang G Z, Ma X Y, et al. Epoxy/clay nanocomposites: further exfoliation of newly modified clay induced by shearing force of ball milling [J]. Polym. Int., 2004, 53: 1545
[5] Chen C G, Tolle T B. Fully exfoliated layered silicate epoxy nanocomposites [J]. J. Polym. Sci., 2004, 42B: 3981
[6] Chen B, Liu J, Chen H B, et al. Synthesis of disordered and highly exfoliated epoxy/clay nanocomposites using organoclay with catalytic function via acetone-clay slurry method [J]. Chem. Mater., 2004, 16: 4864
[7] Wang K, Wang L, Wu J S, et al. Preparation of highly exfoliated epoxy/clay nanocomposites by ”slurry compounding”: process and mechanisms [J]. Langmuir, 2005, 21: 3613
[8] Wang K, Chen L, Wu J S, et al. Epoxy nanocomposites with highly exfoliated clay: mechanical properties and fracture mechanisms [J]. Macromolecules, 2005, 38: 788
[9] Zaman I, Le Q H, Kuan H C, et al. Interface-tuned epoxy/clay nanocomposites [J]. Polymer, 2011, 52: 497
[10] Zhang Y, Li X G, Chen B, et al. Highly exfoliated epoxy/clay nanocomposites: Mechanism of exfoliation and thermal/mechanical properties [J]. Compos. Struct., 2015, 132: 44
[11] Wei R, Wang X Q, Zhang X, et al. A novel method for manufacturing high-performance layered silicate/epoxy nanocomposites using an epoxy-diamine adduct to enhance compatibility and interfacial reactivity [J]. Macromol. Mater. Eng., 2018, 303: 1800065
[12] Wang W S, Chen H S, Wu Y W, et al. Properties of novel epoxy/clay nanocomposites prepared with a reactive phosphorus-containing organoclay [J]. Polymer, 2008, 49: 4826
[13] Lan T, Kaviratna P D, Pinnavaia T J. Mechanism of clay tactoid exfoliation in epoxy-clay nanocomposites [J]. Chem. Mater., 1995, 7: 2144
[14] Kornmann X, Lindberg H, Berglund L A. Synthesis of epoxy-clay nanocomposites: influence of the nature of the clay on structure [J]. Polymer, 2001, 42: 1303
[15] Xidas P I, Triantafyllidis K S. Effect of the type of alkylammonium ion clay modifier on the structure and thermal/mechanical properties of glassy and rubbery epoxy-clay nanocomposites [J]. Eur. Polym. J., 2010, 46: 404
[16] Messersmith P B, Giannelis E P. Synthesis and characterization of layered silicate-epoxy nanocomposites [J]. Chem. Mater., 1994, 6: 1719
[17] Brown J M, Curliss D, Vaia R A. Thermoset-layered silicate nanocomposites. quaternary ammonium montmorillonite with primary diamine cured epoxies [J]. Chem. Mater., 2000, 12: 3376
[18] Chen B, Li J Y, Li X Y, et al. Achieving high thermal and mechanical properties of epoxy nanocomposites via incorporation of dopamine interfaced clay [J]. Polym. Compos., 2018, 39(S4): E2407
[19] Chen J J, Cheng I J, Chu C C. High compatibility of the poly (oxypro-pylene) amine-intercalated montmorillonite for epoxy [J]. Polym. J., 2003, 35: 411
[20] Li J X, Si C Y, Liu J Q, et al. Reversible pH-controlled switching of an artificial antioxidant selenoenzyme based on pseudorotaxane formation and dissociation [J]. Chem. Commun., 2015, 51: 9987
[21] Lan T, Pinnavaia T J. Clay-reinforced epoxy nanocomposites [J]. Chem. Mater., 1994, 6: 2216
[22] Becker O, Varley R, Simon G. Morphology, thermal relaxations and mechanical properties of layered silicate nanocomposites based upon high-functionality epoxy resins [J]. Polymer, 2002, 43: 4365
[23] Lu H B, Nutt S. Restricted relaxation in polymer nanocomposites near the glass transition [J]. Macromolecules, 2003, 36: 4010
[24] Zhang X G, Loo L S. Study of glass transition and reinforcement mechanism in polymer/layered silicate nanocomposites [J]. Macromolecules, 2009, 42: 5196
[1] 叶姣凤, 王飞, 左洋, 张钧翔, 罗晓晓, 冯利邦. 兼具高强度、高韧性和自修复性能的环氧树脂改性热可逆聚氨酯[J]. 材料研究学报, 2023, 37(4): 257-263.
[2] 李瀚楼, 焦晓光, 朱欢欢, 赵晓欢, 矫庆泽, 冯彩虹, 赵芸. 支链含氟聚酯的合成和性能[J]. 材料研究学报, 2023, 37(4): 315-320.
[3] 马逸舟, 赵秋莹, 杨路, 裘进浩. 热塑型聚酰亚胺/聚偏氟乙烯全有机复合薄膜的制备及其介电储能[J]. 材料研究学报, 2023, 37(2): 89-94.
[4] 赵鹏, 董英杰, 李响, 陈斌, 张英. 界面强度对柔性环氧树脂/粘土纳米复合材料热/力学性能的影响[J]. 材料研究学报, 2022, 36(6): 454-460.
[5] 殷洁, 胡云涛, 刘慧, 杨逸霏, 王艺峰. 基于电沉积技术构建聚苯胺/海藻酸膜及电化学性能研究[J]. 材料研究学报, 2022, 36(4): 314-320.
[6] 申延龙, 李北罡. 磁性氨基酸功能化海藻酸铝凝胶聚合物的制备及对偶氮染料的超强吸附[J]. 材料研究学报, 2022, 36(3): 220-230.
[7] 龙庆, 王传洋. 不同碳黑含量PMMA的热降解行为和动力学分析[J]. 材料研究学报, 2022, 36(11): 837-844.
[8] 蒋平, 吴丽华, 吕太勇, José Pérez-Rigueiro, 王安萍. 蜘蛛大壶状腺丝的反复拉伸力学行为和性能[J]. 材料研究学报, 2022, 36(10): 747-759.
[9] 鄢俊, 杨进, 王涛, 徐桂龙, 李朝晖. 有机硅油改性水性酚醛的制备及其性能[J]. 材料研究学报, 2021, 35(9): 651-656.
[10] 张昊, 李帆, 常娜, 王海涛, 程博闻, 王攀磊. 羧酸型接枝淀粉吸附树脂的制备和对染料的去除性能[J]. 材料研究学报, 2021, 35(6): 419-432.
[11] 孙丽颖, 钱建华, 赵永芳. AgNWs-TPU/PVDF柔性薄膜电容传感器的制备和性能[J]. 材料研究学报, 2021, 35(6): 441-448.
[12] 唐开元, 黄洋, 黄湘舟, 葛颖, 李娉婷, 袁凡舒, 张威威, 孙东平. 碳化细菌纤维素的理化性质及其在甲醇电催化中的应用[J]. 材料研究学报, 2021, 35(4): 259-270.
[13] 苏晨文, 张婷玥, 郭丽伟, 李乐, 杨苹, 刘艳秋. 用于模拟细胞外基质的硫醇-烯水凝胶的制备[J]. 材料研究学报, 2021, 35(12): 903-910.
[14] 季亚明, 杨雅茹, 姚勇波, 李佳倩, 沈小军, 刘淑强. 碳纳米球基氮--硫复合阻燃剂的合成及其对环氧树脂的阻燃性能[J]. 材料研究学报, 2021, 35(12): 918-924.
[15] 张向阳, 章奇羊, 汤涛, 郑涛, 柳浩, 刘国金, 朱海霖, 朱海峰. 基于MOFs的复合材料制备及其对亚甲基蓝染料的吸附性能[J]. 材料研究学报, 2021, 35(11): 866-872.