Please wait a minute...
材料研究学报  2020, Vol. 34 Issue (3): 225-230    DOI: 10.11901/1005.3093.2019.364
  研究论文 本期目录 | 过刊浏览 |
Mg-13Gd-1Zn合金的组织与力学性能
甄睿1,2(),吴震1,许恒源1,谈淑咏1,2
1. 南京工程学院材料科学与工程学院 南京 211167
2. 江苏省先进结构材料与应用技术重点实验室 南京 211167
Microstructures and Mechanical Properties of Mg-13Gd-1Zn Alloy
ZHEN Rui1,2(),WU Zhen1,XU Hengyuan1,TAN Shuyong1,2
1. School of Material Science and Engineering, Nanjing Institute of Technology, Nanjing 211167, China
2. Jiangsu Key Laboratory of Advanced Structural Materials and Application Technology, Nanjing 211167, China
引用本文:

甄睿,吴震,许恒源,谈淑咏. Mg-13Gd-1Zn合金的组织与力学性能[J]. 材料研究学报, 2020, 34(3): 225-230.
Rui ZHEN, Zhen WU, Hengyuan XU, Shuyong TAN. Microstructures and Mechanical Properties of Mg-13Gd-1Zn Alloy[J]. Chinese Journal of Materials Research, 2020, 34(3): 225-230.

全文: PDF(3529 KB)   HTML
摘要: 

研究了铸态、退火态、挤压态和T5时效态Mg-13Gd-1Zn三元合金的显微组织和力学性能。结果表明,合金的铸态组织由α-Mg、(Mg,Zn)3Gd和14H-LPSO长周期相组成。合金在均匀化退火和热挤压后的直接时效(T5)过程中都发生了晶内14H-LPSO相的沉淀析出,表明合金中14H-LPSO的沉淀相变发生在一个很宽的温度范围(200~510℃)。在挤压后合金的直接时效(T5)过程中发生了β'β1相的沉淀析出。在沉淀强化和LPSO强化的共同作用下,合金的屈服强度、抗拉强度和伸长率分别为197 MPa、397 MPa和2.56%。在200℃/80 MPa和200℃/120 MPa两种实验条件下,Mg-13Gd-1Zn合金的抗蠕变性能均优于WE54合金。

关键词 金属材料镁合金热挤压时效处理长周期结构蠕变    
Abstract

A ternary alloy with composition of Mg-13Gd-1Zn (%, mass fraction) was prepared by conventional smelting and casting technique. The microstructure and mechanical properties of the as-cast, as-annealed, as-extruded and as-aged (T5) alloy were investigated. The results show that the microstructure of the as-cast alloy consists of α-Mg matrix, (Mg, Zn)3Gd eutectic and a 14H long period staking ordered (14H-LPSO) phase. The significant increase of 14H-LPSO phase after annealing and ageing (T5) treatment in the alloy microstructure indicates that the precipitation of the 14H-LPSO phase occurs in a wide temperature range (200~510oC). The β' and β1 precipitates have also been observed in the alloy after ageing (T5) treatment. Under the combined action of precipitation strengthening and LPSO strengthening, the tensile strength, yield strength and elongation of the alloy are 397 MPa, 197 MPa and 2.56%, respectively. The creep properties of the Mg-13Gd-1Zn alloy are higher than those of the WE54 alloy in the two experimental conditions of 200oC/80 MPa and 200oC/120 MPa.

Key wordsmetallic materials    magnesium alloy    hot extrusion    ageing treatment    long period stacking ordered structures (LPSO)    creep
收稿日期: 2019-07-22     
ZTFLH:  TG146.22  
基金资助:江苏省大学生创新创业训练计划(201911276034Y);南京工程学院科研基金(ZKJ201604);江苏高校优秀科技创新团队
作者简介: 甄睿,女,1978年生,副教授,博士
图1  铸态和退火态合金的XRD图谱
图2  合金的OM像和层片相的电子衍射花样(EB//[112?0])
图3  挤压态合金的显微组织
图4  T5态合金的显微组织
StateUST/MPaYST/MPaElongation/%
As-cast1751422.40
As-extruded34014310.3
T53971972.56
表1  Mg-13Gd-1Zn合金的室温拉伸性能
图5  合金T5处理后拉伸试样中14H-LPSO相的TEM照片和电子衍射花样(EB//[112?0])
图6  合金在200℃/80 MPa和200℃/120 MPa条件下蠕变100 h的蠕变曲线
AlloyT/℃σ/MPaε/s-1×10-9

100 h

εt /%

tf /h
Mg-13Gd-1Zn200805.360.24>100
12011.60.51>100
WE54200806.580.32>100
12024.50.96>100
表2  合金在200℃/80 MPa和200℃/120 MPa条件下的抗蠕变性能
图7  Mg-13Gd-1Zn合金在200℃/80 MPa条件下蠕变100 h的SEM形貌
[1] Amiya K, Ohsuna T, Inoue A. Long-Period Hexagonal Structures in Melt-Spun Mg97Ln2Zn1 (Ln=Lanthanide Metal) Alloys [J]. Mater Trans., 2003, 44(10): 2151
[2] Yamasaki M, Anan T, Yoshimoto Set al. Mechanical properties of warm-extruded Mg-Zn-Gd alloy with coherent 14H long periodic stacking ordered structure precipitate [J]. Scr. Mater. 2005, 53 (7): 799
[3] Yamasaki M, Sasaki M, Nishijima Met al. Formation of 14H long period stacking ordered structure and profuse stacking faults in Mg-Zn-Gd alloys during isothermal aging at high temperature [J]. Acta Mater., 2007, 55(20): 6798
[4] Itoi T, Seimiya T, Kawamura Yet al. Long period stacking structures observed in Mg97Zn1Y2 alloy [J]. Scr. Mater., 2004, 51(2): 107
[5] Wu Y J, Lin D L, Zeng X Q, et al. Formation of a lamellar 14H-type long period stacking ordered structure in an as-cast Mg-Gd-Zn-Zr alloy [J]. J. Mater. Sci., 2009, 44(6): 1607
[6] Zeng X Q, Wu Y J, Peng L M, et al. LPSO structure and aging phases in Mg-Gd-Zn-Zr alloy [J]. Acta Metall. Sin., 2010, 46(9): 1041
[6] 曾小勤, 吴玉娟, 彭立明等. Mg-Gd-Zn-Zr合金中的 LPSO 结构和时效相 [J]. 金属学报, 2010, 46(9): 1041
[7] Zhen R, Sun Y, Xue F, et al. Effect of heat treatment on the microstructures and mechanical properties of the extruded Mg-11Gd-1Zn alloy [J]. J. Alloy Compd., 2013, 550: 273
[8] Wu X, Pan F, Cheng R, et al. Effect of morphology of long period stacking ordered phase on mechanical properties of Mg-10Gd-1Zn-0.5Zr magnesium alloy [J]. Mater. Sci. Eng. A, 2018, 726: 64
[9] Zhao Q, Wu Y, Rong W, et al. Effect of applied pressure on microstructures of squeeze cast Mg-15Gd-1Zn-0.4Zr alloy [J]. J. Magn. Alloy, 2018, 6: 197
[10] Du Y X, Wu Y J, Peng L M, et al. Formation of lamellar phase with18R-type LPSO structure in an as-cast Mg96Gd3Zn1 (at%) alloy [J]. Mater. Lett., 2016, 169: 168
[11] Wu X, Pan F S, Cheng R J, et al. Formation of long period stacking ordered phases in Mg-10Gd-1Zn-0.5Zr (wt.%) alloy [J]. Mater. Charact., 2019, 147: 50
[12] Li J C, He Z L, Fun P H, et al. Heat treatment and mechanical properties of a high-strength cast Mg-Gd-Zn alloy [J]. Mater. Sci. Eng. A, 2016, 651: 745
[13] Wen K, Liu K, Wang Z, et al. Effect of pre-solution treatment on mechanical properties of as-extruded Mg96.9Zn0.43Gd2.48Zr0.15 alloy [J]. Mater. Sci. Eng. A, 2016, 674: 33
[14] Wu X, Pan F, Cheng R, et al. Effect of morphology of long period stacking ordered phase on mechanical properties of Mg-10Gd-1Zn-0.5Zr magnesium alloy [J]. Mater. Sci. Eng. A, 2018, 726: 64
[15] Rong W, Zhang Y, Wu Y, et al. Fabrication of high-strength Mg-Gd-Zn-Zr alloys via differential-thermal extrusion [J]. Materials Characterization, 2017, 131: 380
[16] Rong W, Zhang Y, Wu YJ et al. The role of bimodal-grained structure in strengthening tensile strength and decreasing yield asymmetry of Mg-Gd-Zn-Zr alloys [J]. Materials Science & Engineering A,2019, 740-741: 262
[17] Srinivasan A, Huang Y, Mendis C L, et al. Investigations on microstructures, mechanical and corrosion properties of Mg-Gd-Zn alloys [J]. Mater. Sci. Eng. A, 2014, 595: 224
[18] Srinivasan A, Dieringa H, Mendis C L, et al. Creep behavior of Mg-10Gd-xZn (x=2 and 6wt%) alloys [J]. Mater. Sci. Eng. A, 2016, 649: 158
[19] Garcés G, O?orbe E, Dobes F, et al. Effect of microstructure on creep behaviour of cast Mg97Y2Zn1 (at.%) alloy [J]. Mater. Sci. Eng. A, 2012, 539: 48
[20] Yin D D, Wang Q D, Boehlert C J, et al. Creep behavior of Mg-11Y-5Gd-2Zn-0.5Zr (wt.%) at 573 K [J]. Mater. Sci. Eng. A, 2012, 546: 239
[21] Jono Y, Yamasaki M, Kawamura Y. Quantitative evaluation of creep strain distribution in an extruded Mg-Zn-Gd alloy of multimodal microstructure [J]. Acta Mater., 2015, 82(82): 198
[22] Wu Y J, Zeng X Q, Lin D L, et al. The microstructure evolution with lamellar 14H-type LPSO structure in an Mg96.5Gd2.5Zn1 alloy during solid solution heat treatment at 773 K [J]. J. Alloy Compd., 2009, 477(1-2): 193
[23] Wen K, Liu K, Wang Z, et al. Effect of pre-solution treatment on mechanical properties of as-extruded Mg96.9Zn0.43Gd2.48Zr0.15 alloy [J]. Mater. Sci. Eng. A, 2016, 674: 33
[24] Li Y, Xiao W, Wang F, et al. The roles of long period stacking ordered structure and Zn solute in the hot deformation behavior of Mg-Gd-Zn alloys [J]. J. Alloy Compd., 2018, 745: 33
[25] Zhu Y M, Morton A J, Nie J F. The 18R and 14H long-period stacking ordered structures in Mg-Y-Zn alloys [J]. Acta Mater., 2010, 58(8): 2936
[26] Yamasaki M, Sasaki M, Nishijima M, et al. Format ion of 14H long period stacking ordered structure and profuse stacking faults in Mg-Zn-Gd alloys during isothermal aging at high temperature [J]. Acta Mater., 2007, 55(20): 6798
[27] Honma T, Ohkubo T, Kamado S, et al. Effect of Zn additions on the age-hardening of Mg-2.0Gd-1.2Y-0.2Zr alloys [J]. Acta Mater.,2007, 55(12): 4137
[1] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[3] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[4] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[5] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[6] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[7] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[8] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[9] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[10] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[11] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[12] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[13] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[14] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[15] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.