Please wait a minute...
材料研究学报  2020, Vol. 34 Issue (2): 81-91    DOI: 10.11901/1005.3093.2019.334
  研究论文 本期目录 | 过刊浏览 |
金属间化合物的合成及其催化应用
侯志全,郭萌,刘雨溪,邓积光,戴洪兴()
北京工业大学环境与能源工程学院 北京 100124
Synthesis of Intermetallic Compounds and Their Catalytic Applications
HOU Zhiquan,GUO Meng,LIU Yuxi,DENG Jiguang,DAI Hongxing()
College of Environmental and Energy Engineering, Beijing University of Technology, Beijing 100124, China
引用本文:

侯志全,郭萌,刘雨溪,邓积光,戴洪兴. 金属间化合物的合成及其催化应用[J]. 材料研究学报, 2020, 34(2): 81-91.
Zhiquan HOU, Meng GUO, Yuxi LIU, Jiguang DENG, Hongxing DAI. Synthesis of Intermetallic Compounds and Their Catalytic Applications[J]. Chinese Journal of Materials Research, 2020, 34(2): 81-91.

全文: PDF(2797 KB)   HTML
摘要: 

简要叙述了合成金属间化合物的化学还原、沉积沉淀还原、化学气相沉积和热退火等方法。这些合成方法各有优缺点,可根据实际需求选择适宜的方法。总结了金属间化合物对加氢、氧化、重整等反应的催化性能,发现金属间化合物是一类性能优良的催化材料,催化活性与其具有的有序原子排列、电子效应、几何效应、空间效应、协同作用等有关。此外,还展望了此类材料的未来研究方向。

关键词 评述金属材料催化应用金属间化合物合成方法    
Abstract

In this review article, the methods, such as chemical reduction, deposition-precipitation reduction, chemical vapor deposition, and thermal annealing for the synthesis of intermetallic compounds are briefly described. These different synthesis methods possess intrinsically advantages and shortcomings, therefore, suitable methods may be selected according to the actual requirements in practical applications. Catalytic activities of intermetallic compounds for the reactions of oxidation, hydrogenation, and reforming are summarized, from which it is found that intermetallic compounds are a kind of highly efficient catalytic materials, and their high catalytic performance is associated with the ordered atom arrangement, electronic effect, geometric effect, steric effect, and synergistic action. In addition, the future investigation work on such materials is also envisioned.

Key wordsreview    metallic materials    catalytic application    intermetallic compounds    synthesis method
收稿日期: 2019-07-08     
ZTFLH:  TG430.40  
基金资助:国家自然科学基金(21876006)
作者简介: 侯志全,男,1994年生,博士生
图1  (a) 置换固溶合金、(b) 间隙固溶合金和(c) 金属间化合物的结构示意图[4]
图2  采用多元醇法合成金属间化合物的反应机理示意图[4]
图3  NaAu2(111)和Au(221)晶面上共吸附CO和O2后的反应途径示意图,上、下分别为Au(221)和NaAu2(111)晶面上的反应途径[45]
图4  镍基催化剂在空速为48000 mL/(g·h)条件下对CO加氢反应的CO转化率(a)和甲烷选择性(b)[49]
图5  PdZnAl、PdMgAl和PdMgGa催化剂上MSR反应在250oC时的甲醇反应速率与氢气形成速率[21]
Intermetallic compoundSynthesis methodCrystal phaseParticle sizeReaction conditionCatalytic performanceRef.
Pd5Ga3Chemical reductionOrthorhomibc5.3 nm0.5% CH4, 4% O2, N2 balance; space velocity (SV): 80000 mL/(g·h)T90% is lower to 372oC, the special reaction rate of Pd is 23.32×10-6 mol/(gPd s) at 290oC.[12]
Ni3Ga, Ni3Sn2Chemical reductionCubic3.5~7.5 nmPretreated with H2; 1 mmol substrate and 0.5 mmol n-dodecane; H2: 500 kPa; 1300 r/minAfter 13 h continuous reaction, the conversion of various types of alkyne reached more than 90%, and the selectivity of olefins was over 94%.[15]
PdmMn (M=Ge, In, Sn, Zn)Gas-phase reduction--12.5% butylene, butylene: O2=1:1, He (balance); total gas flow rate: 120 mL/minPdIn, PdBi or Pd3Fe catalysts show high selectivity for 1,3-Butadiene and 1-butene (more than 50%) and high yield.[20]
Pd2Ga and PdZnGas-phase reductionCubic-H2O/CH3OH=1.0, total gas flow rate: 26 mL/min, methanol concentration: 28.4%PdZnAl exhibited the best catalytic activity, with 87% hydrogen selectivity at 250oC and hydrogen generation rate of 964 μmol/(g·min).[21]
Ni3Sn, Ni3Sn2, Ni3Sn2, Ni3Sn4Arc melting-25~38 μmThe partial pressures of acetylene and hydrogen are 2.7 and 13 kPa, respectively.The acetylene conversion rates of Ni3Sn, Ni3Sn2 and Ni3Sn4 are 2.3×10-6 mol/(g·s), 0.6×10-6 mol/(g·s) and less than 0.001×10-6 mol/(g·s), respectively.[22]
Pt3SnPolyol process-5.2±1.0 nmO2/CO=6:1; room temperatureThe initiation temperature of CO oxidation on Pt3Sn is lower than that on the Pt catalyst.[31]
Pt3TiChemical reductionCubic2.5 nm2 % CO, 1% O2, 97% He, space velocity (SV): 120000 mL/(g·h)The ignition temperature of CO oxidation on Pt3Ti catalyst is 125oC, which is lower than that on single Pt catalyst.[43]
Ni2Si, NiSi or NiSi2Chemical vapor depositionCubic3~4 nmH2/CO=3:1, Ar balance, space velocity (SV): 48000 mL/(g·h)The activity of CO methanation on Ni-Si catalyst is much higher than that on single nickel catalyst, with enhanced stability of nickel sintering resistance at high temperature (500~600oC).[49]
NiZnThermal annealingCubic20~32 μmmethanol:H2O=1:1; 0.01 mL/min, N2: 13.2 mL/min, He: 1.6 mL/minNiZn catalyst has good catalytic performance for methanol reforming (80% conversion at 550oC) and good hydrogen selectivity (70%).[57]
表1  文献报道的金属间化合物的合成方法、物理性质和催化活性
图6  在0.1 mol/L HClO4中实验测量的Pt3M表面上ORR在60oC时的比活性与表面d带中心电位之间的关系[63]
图7  Ni和Ni3M金属间化合物对H2-D2平衡反应的表观活化能与d带中心电位的关系[64]
图8  (a) PdGa(111)和PdGa(1?1?1?)晶面的STM照片;(b) PdGa(111)和PdGa(1?1?1?)晶面上CO吸附的红外谱图[65]
图9  (a) 通过烷基中间体的氢控烯烃异构化、(b) 一个RhSb纳米粒子的晶体形状和相应的表面原子排列和(c) 受限氢靠近RhSb (020)晶面上吸附的顺式-2-丁烯[67]
[1] Gao F, Goodman D W. Pd-Au bimetallic catalysts: understanding alloy effects from planar models and (supported) nanoparticles [J]. Chem. Soc. Rev., 2012, 41: 8009
[2] Zhang Q, Lee I, Joo J B, et al. Core-shell nanostructured catalysts [J]. Acc. Chem. Res., 2013, 46: 1816
[3] Wang X H, He B B, Hu Z Y, et al. Current advances in precious metal core-shell catalyst design [J]. Sci. Technol. Adv. Mater., 2014, 15: 043502
[4] Furukawa S, Komatsu T. Intermetallic compounds: promising inorganic materials for well-structured and electronically modified reaction environments for efficient catalysis [J]. ACS Catal., 2017, 7: 735
[5] Komatsu T, Furukawa S. Intermetallic compound nanoparticles dispersed on the surface of oxide support as active and selective catalysts [J]. Mater. Trans., 2015, 56: 460
[6] Bonnemann H, Richards R M. Nanoscopic metal particles-synthetic methods and potential applications [J]. Eur. J. Inorg. Chem., 2001, 2001: 2455
[7] Burda C, Chen X B, Narayanan R, et al. Chemistry and properties of nanocrystals of different shapes [J]. Chem. Rev., 2005, 105: 1025
[8] Rao C N R, Kulkarni G U, Thomas P J, et al. Metal nanoparticles and their assemblies [J]. Chem. Soc. Rev., 2000, 29: 27
[9] Chou N H, Schaak R. Shape-controlled conversion of β-Sn nanocrystals into intermetallic M-Sn (M=Fe, Co, Ni, Pd) nanocrystals [J]. J. Am. Chem. Soc., 2007, 129: 7339
[10] Alden L R, Roychowdhury C, Matsumoto F, et al. Synthesis, characterization, and electrocatalytic activity of PtPb nanoparticles prepared by two synthetic approaches [J]. Langmuir, 2006, 22: 10465
[11] Alden L, Han D, Matsumoto F, et al. Intermetallic PtPb nanoparticles prepared by sodium naphthalide reduction of metal-organic precursors: electrocatalytic oxidation of formic acid [J]. Chem. Mater., 2006, 18: 5591
[12] Hou Z Q, Liu Y X, Deng J G, et al. Highly active and stable Pd-GaOx/Al2O3 catalysts derived from intermetallic Pd5Ga3 nanocrystals for methane combustion [J]. ChemCatChem, 2018, 10: 5637
[13] Sra A K, Schaak R E. Synthesis of atomically ordered AuCu and AuCu3 nanocrystals from bimetallic nanoparticle precursors [J]. J. Am. Chem. Soc., 2004, 126: 6667
[14] Li Y D, Li L Q, Liao H W, et al. Preparation of pure nickel, cobalt, nickel-cobalt and nickel-copper alloys by hydrothermal reduction [J]. J. Mater. Chem., 1999, 9: 2675
[15] Liu Y X, Liu X W, Feng Q C, et al. Intermetallic NixMy (M=Ga and Sn) nanocrystals: a non-precious metal catalyst for semi-hydrogenation of alkynes [J]. Adv. Mater., 2016, 28: 4747
[16] Wu J B, Zhang J L, Peng Z M, et al. Truncated octahedral Pt3Ni oxygen reduction reaction electrocatalysts [J]. J. Am. Chem. Soc., 2010, 132: 4984
[17] Stassi J P, Zgolicz P D, De Miguel S R, et al. Formation of different promoted metallic phases in PtFe and PtSn catalysts supported on carbonaceous materials used for selective hydrogenation [J]. J. Catal., 2013, 306: 11
[18] Furukawa S, Ehara K, Komatsu T. Unique reaction mechanism of preferential oxidation of CO over intermetallic Pt3Co catalysts: surface-OH-mediated formation of a bicarbonate intermediate [J]. Catal. Sci. Technol., 2016, 6: 1642
[19] Komatsu T, Takasaki M, Ozawa K, et al. PtCu intermetallic compound supported on alumina active for preferential oxidation of CO in hydrogen [J]. J. Phys. Chem. C, 2013, 117: 10483
[20] Furukawa S, Endo M, Komatsu T. Bifunctional catalytic system effective for oxidative dehydrogenation of 1-butene and n-butane using Pd-based intermetallic compounds [J]. ACS Catal., 2014, 4: 3533
[21] Ota A, Kunkes E L, Kasatkin I, et al. Comparative study of hydrotalcite-derived supported Pd2Ga and PdZn intermetallic nanoparticles as methanol synthesis and methanol steam reforming catalysts [J]. J. Catal., 2012, 293: 27
[22] Onda A, Komatsu T, Yashima T. Characterization and catalytic properties of Ni-Sn intermetallic compounds in acetylene hydrogenation [J]. Phys. Chem. Chem. Phys., 2000, 2: 2999
[23] Endo N, Ito S, Tomishige K, et al. CO hydrogenation over a hydrogen-induced amorphization of intermetallic compound CeNi2 [J]. Catal. Today, 2011, 164: 293
[24] Endo N, Kameoka S, Tsai A P, et al. Hydrogen absorption properties of intermetallic compounds in the Au-Zr binary system [J]. J. Alloys Compd., 2009, 485: 588
[25] Chen X, Li M, Guan J C, et al. Nickel-silicon intermetallics with enhanced selectivity in hydrogenation reactions of cinnamaldehyde and phenylacetylene [J]. Ind. Eng. Chem. Res., 2012, 51: 3604
[26] Komatsu T, Tamura A. Pt3Co and PtCu intermetallic compounds: promising catalysts for preferential oxidation of CO in excess hydrogen [J]. J. Catal., 2008, 258: 306
[27] Komatsu T, Sou K, Ozawa K I. Preparation and catalytic properties of fine particles of Pt-Ge intermetallic compound formed inside the mesopores of MCM-41 [J]. J. Mol. Catal. A, 2010, 319: 71
[28] Sra A K, Ewers T D, Schaak R E. Direct solution synthesis of intermetallic AuCu and AuCu3 nanocrystals and nanowire networks [J]. Chem. Mater., 2005, 17: 758
[29] Murray C B, Sun S H, Gaschler W, et al. Colloidal synthesis of nanocrystals and nanocrystal superlattices [J]. J. Res. Dev., 2001, 45: 47
[30] Cable R E, Schaak R E. Low-temperature solution synthesis of nanocrystalline binary intermetallic compounds using the polyol process [J]. Chem. Mater., 2005, 17: 6835
[31] Bauer J C, Chen X L, Liu Q S, et al. Converting nanocrystalline metals into alloys and intermetallic compounds for applications in catalysis [J]. J. Mater. Chem., 2008, 18: 275
[32] Hermans S, Raja R, Thomas J M, et al. Solvent-free, low-temperature, selective hydrogenation of polyenes using a bimetallic nanoparticle Ru-Sn catalyst [J]. Angew. Chem. Int. Ed., 2001, 40: 1211
[33] Thomas J M, Johnson B F G, Raja R, et al. High-performance nanocatalysts for single-step hydrogenations [J]. Acc. Chem. Res., 2002, 36: 20
[34] Thomas J M, Raja R, Johnson B F G, et al. Bimetallic catalysts and their relevance to the hydrogen economy [J]. Ind. Eng. Chem. Res., 2003, 42: 1563
[35] Luo Y, Villaseca S A, Friedrich M, et al. Addressing electronic effects in the semi-hydrogenation of ethyne by InPd2 and intermetallic Ga-Pd compounds [J]. J. Catal., 2016, 338: 265
[36] Kameoka S, Kimura T. A novel process for preparation of unsupported mesoporous intermetallic NiZn and PdZn catalysts [J]. Catal. Lett., 2009, 131: 219
[37] Pan H B, Wai C M. Facile sonochemical synthesis of carbon nanotube-supported bimetallic Pt-Rh nanoparticles for room temperature hydrogenation of arenes [J]. New J. Chem., 2011, 35: 1649
[38] Anandan S, Grieser F, Ashokkumar M. Sonochemical synthesis of Au-Ag core-shell bimetallic nanoparticles [J]. J. Phys. Chem. C, 2008, 112: 15102
[39] Santra A K, Goodman D W. Catalytic oxidation of CO by platinum group metals: from ultrahigh vacuum to elevated pressures [J]. Electrochim. Acta, 2002, 47: 3595
[40] Over H, Muhler M. Catalytic CO oxidation over ruthenium-bridging the pressure gap [J]. Prog. Surf. Sci., 2003, 72: 3
[41] Min B K, Friend C M. Heterogeneous gold-based catalysis for green chemistry: low-temperature CO oxidation and propene oxidation [J]. Chem. Rev., 2007, 107: 2709
[42] Freund H J, Meijer G, Scheffler M, et al. CO oxidation as a prototypical reaction for heterogeneous processes [J]. Angew. Chem. Int. Ed., 2011, 50: 10064
[43] Saravanan G, Abe H, Xu Y, et al. Pt3Ti nanoparticles: fine dispersion on SiO2 supports, enhanced catalytic CO oxidation, and chemical stability at elevated temperatures [J]. Langmuir, 2010, 26: 11446
[44] Liu X Y, Wang A Q, Li L, et al. Structural changes of Au-Cu bimetallic catalysts in CO oxidation: In situ XRD, EPR, XANES, and FT-IR characterizations [J]. J. Catal., 2011, 278: 288
[45] Xiao C X, Wang L L, Maligal-Ganesh R V, et al. Intermetallic NaAu2 as a heterogeneous catalyst for low-temperature CO oxidation [J]. J. Am. Chem. Soc., 2013, 135: 9592
[46] Baglin E G, Atkinson G B, Nicks L J. Methanol synthesis catalysts from thorium-copper intermetallics. Preparation and evaluation [J]. Ind. Eng. Chem. Prod. Res. Dev., 1981, 20: 87
[47] Ferreira A C, Gon?alves A P, Gasche T A, et al. Partial oxidation of me-thane over bimetallic copper-and nickel-actinide oxides (Th, U) [J]. J. Alloys Compd., 2010, 497: 249
[48] Sasikala R, Gupta N M, Kulshreshtha S K, et al. Carbon monoxide methanation over FeTi1+xintermetallics [J]. J. Catal., 1987, 107: 510
[49] Chen X, Jin J H, Sha G Y, et al. Silicon-nickel intermetallic compounds supported on silica as a highly efficient catalyst for CO methanation [J]. Catal. Sci. Technol., 2014, 4: 53
[50] Studt F, Sharafutdinov I, Abild-Pedersen F, et al. Discovery of a Ni-Ga catalyst for carbon dioxide reduction to methanol [J]. Nat. Chem., 2014, 6: 320
[51] Armbrüster M, Wowsnick G, Friedrich M, et al. Synthesis and catalytic properties of nanoparticulate intermetallic Ga-Pd compounds [J]. J. Am. Chem. Soc., 2011, 133: 9112
[52] Shao L D, Zhang W, Armbrüster M, et al. Nanosizing intermetallic compounds onto carbon nanotubes: active and selective hydrogenation catalysts [J]. Angew. Chem. Int. Ed., 2011, 50: 10231
[53] Zhou H R, Yang X F, Li L, et al. PdZn intermetallic nanostructure with Pd-Zn-Pd ensembles for highly active and chemoselective semi-hydrogenation of acetylene [J]. ACS Catal., 2016, 6: 1054
[54] Tew M W, Emerich H, Van Bokhoven J A. Formation and characterization of PdZn alloy: a very selective catalyst for alkyne semihydrogenation [J]. J. Phys. Chem. C, 2011, 115: 8457
[55] Furukawa S, Komatsu T. Selective hydrogenation of functionalized alkynes to (E)-alkenes, using ordered alloys as catalysts [J]. ACS Catal., 2016, 6: 2121
[56] Neumann M, Teschner D, Knop-Gericke A, et al. Controlled synthesis and catalytic properties of supported In-Pd intermetallic compounds [J]. J. Catal., 2016, 340: 49
[57] Friedrich M, Teschner D, Knop-Gericke A, et al. Surface and subsurface dynamics of the intermetallic compound ZnNi in methanol steam reforming [J]. J. Phys. Chem. C, 2012, 116: 14930
[58] Llorca J, Delapiscina P R, Fierro J L G, et al. Influence of metallic precursors on the preparation of silica-supported PtSn alloy: characterization and reactivity in the catalytic activation of CO2 [J]. J. Catal., 1995, 156: 139
[59] Bollmann L, Ratts J L, Joshi A M, et al. Effect of Zn addition on the water-gas shift reaction over supported palladium catalysts [J]. J. Catal., 2008, 257: 43
[60] Lebarbier V, Dagle R, Datye A, et al. The effect of PdZn particle size on reverse-water-gas-shift reaction [J]. Appl. Catal. A, 2010, 379: 3
[61] Arana J, Homs N, Sales J, et al. CO/CO2 hydrogenation and ethylene hydroformylation over silica-supported PdZn catalysts [J]. Catal. Lett., 2001, 72: 183
[62] Furukawa S, Tsuchiya A, Kojima Y, et al. Raney-type Ru-La catalysts prepared from a Ru-La-Al ternary alloy: enhanced activity in ammonia decomposition [J]. Chem. Lett., 2016, 45: 158
[63] Stamenkovic V R, Mun B S, Arenz M, et al. Trends in electrocatalysis on extended and nanoscale Pt-bimetallic alloy surfaces [J]. Nat. Mater., 2007, 6: 241
[64] Furukawa S, Ehara K, Ozawa K, et al. A study on the hydrogen activation properties of Ni-based intermetallics: a relationship between reactivity and the electronic state [J]. Chem. Chem. Phys., 2014, 16: 19828
[65] Prinz J, Gaspari R, St?ckl Q S, et al. Ensemble effect evidenced by CO adsorption on the 3-fold PdGa surfaces [J]. J. Phys. Chem. C, 2014, 118: 12260
[66] Kim D, Xie C L, Becknell N, et al. Electrochemical activation of CO2 through atomic ordering transformations of AuCu nanoparticles [J]. J. Am. Chem. Soc., 2017, 139: 8329
[67] Furukawa S, Ochi K, Luo H, et al. Selective stereochemical catalysis controlled by specific atomic arrangement of ordered alloys [J]. ChemCatChem, 2015, 7: 3472
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] 季雨辰, 刘树和, 张天宇, 查成. MXene在锂硫电池中应用的研究进展[J]. 材料研究学报, 2023, 37(7): 481-494.
[15] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.