Please wait a minute...
材料研究学报  2020, Vol. 34 Issue (1): 73-80    DOI: 10.11901/1005.3093.2019.295
  研究论文 本期目录 | 过刊浏览 |
Tb掺杂双钙钛矿氧化物Pr2CoMnO6的磁热效应
李晓欣1,邢茹1,2,刘娇1,王婷1,孙运斌1,2,陈红伟1,赵建军1,2()
1. 包头师范学院物理科学与技术学院 包头 014030
2. 内蒙古自治区磁学与磁性材料重点实验室 包头师范学院 包头 014030
Magnetocaloric Effect of Tb-doped Double Perovskite Oxide Pr2CoMnO6
LI Xiaoxin1,XING Ru1,2,LIU Jiao1,WANG Ting1,SUN Yunbin1,2,CHEN Hongwei1,ZHAO Jianjun1,2()
1. Baotou Teachers College Physics Institute of Science and Technology, Baotou 014030, China
2. Key Laboratory for Magnetism and Magnetic Material of Inner Mongolia Autonomous Region, Baotou Teachers College, Baotou 014030, China
引用本文:

李晓欣, 邢茹, 刘娇, 王婷, 孙运斌, 陈红伟, 赵建军. Tb掺杂双钙钛矿氧化物Pr2CoMnO6的磁热效应[J]. 材料研究学报, 2020, 34(1): 73-80.
LI Xiaoxin, XING Ru, LIU Jiao, WANG Ting, SUN Yunbin, CHEN Hongwei, ZHAO Jianjun. Magnetocaloric Effect of Tb-doped Double Perovskite Oxide Pr2CoMnO6[J]. Chinese Journal of Materials Research, 2020, 34(1): 73-80.

全文: PDF(5034 KB)   HTML
摘要: 

采用高温固相反应法制备双钙钛矿氧化物Pr(2-x)TbxCoMnO6(x=0,0.05,0.1,0.15)系列陶瓷样品,研究了Tb的掺杂量对Pr2CoMnO6样品的居里温度、磁熵变以及磁相变的影响。结果表明:系列样品Pr(2-x)TbxCoMnO6(x=0,0.05,0.1,0.15)的空间点群为单斜晶系P21/n,具有良好的单相性;该组样品均有两个磁转变点(TC1TC2);随着Tb掺杂量的增加TC1TC2均降低下降;在测量温区内,随着温度的降低4个样品均先后经历顺磁态、顺磁-铁磁共存态;该组样品在7 T外加磁场中的最大磁熵变值ΔSM分别为-1.862、-1.779、-1.768和-1.766 J/(kg·K)。掺杂Tb元素使最大磁熵变值变小,但是拓宽了半高宽温区。结合RCP值可以判断,Pr1.9Tb0.1CoMnO6比其他三个样品更具有作为高温区磁制冷材料的潜能;根据对Arrott曲线、重标定曲线以及Loop曲线的分析,该组样品在此阶段经历了一级相变。

关键词 无机非金属材料磁热效应高温固相反应法一级相变磁制冷效率    
Abstract

A series of double perovskite oxide Pr(2-x)TbxCoMnO6 (x=0, 0.05, 0.1, 0.15) was prepared by high temperature solid state reaction. The effect of Tb-doping on the Curie temperature, magnetic entropy change and magnetic phase transition of double perovskite oxide Pr2CoMnO6 was investigated by analyzing the relevant data. The results show that the series of double perovskite oxides Pr(2-x)TbxCoMnO6 (x=0,0.05,0.1,0.15) all is good single-phase with crystallographic structure of monoclinic P21/n; they all have two magnetic transition points (TC1 and TC2); TC1 and TC2 decrease with the increasing Tb-content; within the desired temperature region, as the temperature decreases the state of the prepared four double perovskite oxides underwent the following transition: paramagnetic state, paramagnetic-ferromagnetic and coexistence state; by a given external magnetic field of 7 T, the maximum magnetic entropy change ΔSMof the prepared four double perovskite oxides is -1.862, -1.779, -1.768 and -1.766 J/(kg·K) respectively. In other word, Tb-doping makes the maximum magnetic entropy change smaller, but increases its half-height wide temperature range. It can be judged that among others, Pr1.9Tb0.1CoMnO6 is the most potential candidate as a high-temperature magnetic refrigeration material especially, regarding to its RCP value; Based on the analysis of the Arrott curve, the recalibration curve and the Loop curve, the four double perovskite oxides underwent a first-order phase transition during the process.

Key wordsinorganic non-metallic materials    magnetocaloric effect    high temperature solid phase reaction method    first-order phase transition    magnetic refrigeration efficiency
收稿日期: 2019-06-12     
ZTFLH:  TM284  
基金资助:国家自然科学基金(11164019);国家自然科学基金(51562032);国家自然科学基金(61565013);内蒙古自治区科学基金(2015MS0109);内蒙高校科学研究基金(NJZZ11166);内蒙高校科学研究基金(NJZY12202);包头市科学技术局产学研合作项目(2014X1014);包头市科学技术局产学研合作项目(2015Z2011)
作者简介: 李晓欣,女,1995年生,硕士生
图1  Pr(2-x)TbxCoMnO6(x=0,0.05,0.1,0.15)样品的XRD图谱
Samplea/nmb/nmc/nmV/nm3c/a
x=00.547690.551010.772750.23320261.4109
x=0.050.545790.551490.770650.23196391.4119
x=0.10.544620.549590.769900.23044471.4136
x=0.150.544130.542080.772110.22774311.4189
表1  Pr(2-x)TbxCoMnO6(x=0,0.05,0.1,0.15)样品的晶格参数和晶胞体积
图2  Pr(2-x)TbxCoMnO6(x=0.15)样品在0.01T磁场下的M-T曲线,插图为同磁场下的dMFC/dT-T曲线
图3  Pr(2-x)TbxCoMnO6(x=0.15)样品在磁场为0.01T下的M-H曲线
图4  Pr(2-x)TbxCoMnO6(x=0,0.05,0.1,0.15)样品在100~220 K等磁场下磁熵变随温度的变化(-?S-T)
图5  Pr(2-x)TbxCoMnO6(x=0,0.05,0.1,0.15)样品在140~220 K温区的Arrott曲线(H/M-M2),插图为100~130 K的Arrott曲线
图6  Pr(2-x)TbxCoMnO6(x=0,0.05,0.1,0.15)样品在不同磁场下的重标定曲线(θ-ΔS/ΔSMP)
图7  Pr(2-x)TbxCoMnO6(x=0,0.05,0.1,0.15)样品在不同温度下的Loop曲线,插图为140 K时的Loop曲线
[1] Zhang Q, Xu Z F, Wang L F, et al. Characterization of magnetic property of double-perovskite (Sr2-xGdx)FeMoO6 [J]. J. Alloys Compd., 2015, 628: 121
[2] Dass R I, Goodenough J B. Multiple magnetic phases of La2CoMn-O6-δ(0<~δ<~0. 05) [J]. Phys. Rev., 2003, 67B: 014401
[3] Bull C L, Gleeson D, Knight K S. Determination of B-site ordering and structural transformations in the mixed transition metal perovskites La2CoMnO6 and La2NiMnO6 [J]. J. Phys. Conden. Matter, 2003, 15: 4927
[4] Singh M P, Truong K D, Fournier P. Magnetodielectric effect in double perovskite La2CoMnO6 thin films [J]. Appl. Phys. Lett., 2007, 91: 042504
[5] Mahato R N, Sethupathi K, Sankaranarayanan V. Colossal magnetoresistance in the double perovskite oxide La2CoMnO6 [J]. J. Appl. Phys., 2010, 107: 09D714
[6] Baidya S, Saha-Dasgupta T. Electronic structure and phonons in La2CoMnO6: A ferromagnetic insulator driven by Coulomb-assisted spin-orbit coupling [J]. Phys. Rev., 2011, 84B: 035131
[7] Liu W J, Shi L, Zhou S M, et al. Griffiths phase, spin-phonon coupling, and exchange bias effect in double perovskite Pr2CoMnO6 [J]. J. Appl. Phys., 2014, 116: 193901
[8] Murthy J K, Chandrasekhar K D, Mahana S, et al. Giant magnetocaloric effect in Gd2NiMnO6 and Gd2CoMnO6 ferromagnetic insulators [J]. J. Phys., 2015, 48D: 355001
[9] Yá?ez S, Mun E D, Zapf V, et al. Multiferroic behavior in the double-perovskite Lu2MnCoO6 [J]. Phys. Rev., 2011, 84B: 134427
[10] Sharma G, Saha J, Kaushik S D, et al. Magnetism driven ferroelectricity above liquid nitrogen temperature in Y2CoMnO6 [J]. Appl. Phys. Lett., 2013, 103: 012903
[11] Sazonov A P, Troyanchuk I O, Kozlenko D P, et al. Magnetic ordering in the Nd2CoMnO6+δ perovskite system [J]. J. Magn. Magn. Mater., 2006, 302: 443
[12] Lin Y Q. Dielectric and magnetic properties of Lanthanum-based double perovskite ceramics [D]. Hangzhou: Zhejiang University, 2010
[12] 林亦琦. La系双钙钛矿陶瓷的介电与磁学性能 [D]. 杭州: 浙江大学, 2010
[13] Liu W J. Structural and physical properties of double perovskite Ln2Ni/CoMnO6 [D]. Hefei: University of Science and Technology of China, 2015
[13] 刘文杰. 双钙钛矿Ln2Ni/CoMnO6体系结构及物性研究 [D]. 合肥: 中国科学技术大学, 2015
[14] Li X X, Liu J, Wang T, et al. Magnetic properties of double perovskite oxide Pr(2-x)TbxCoMnO6 (x=0.00, 0.05, 0.10) [J]. Funct. Mater., 2019, 50: 3142
[14] 李晓欣, 刘 娇, 王 婷等. 双钙钛矿氧化物Pr(2-x)TbxCoMnO6(x=0.00, 0.05, 0.10)的磁性研究 [J]. 功能材料, 2019, 50: 3142
[15] Wang L Y, Li Q, Gong Y Y, et al. The positive and negative magnetodielectric effects in double perovskite Pr2CoMnO6 [J]. J. Am. Ceram. Soc., 2014, 97: 2024
[16] Franco V, Blázquez J S, Ingale B, et al. The magnetocaloric effect and magnetic refrigeration near room temperature: materials and models [J]. Annu. Rev. Mater. Res., 2012, 42: 305
[17] Imad H, Anwar M S, Jong W K, et al. Influence of La addition on the structural, magnetic and magnetocaloric properties in Sr2-xLax-FeMoO6 (0≤x≤0.3) double perovskite [J]. Ceram. Int., 2016, 42: 13098
[18] Huang Z Y. Structure and magnetic properties of the doped perovskite-like heavy rare earth manganites at A and B sites [D]. Guangzhou: South China University of Technology, 2016
[18] 黄志元. A、B位掺杂对钙钛矿重稀土锰氧化物的结构与磁性的影响 [D]. 广州: 华南理工大学, 2016
[19] Liu J, Wang W Q, Wu H Y, et al. Electromagnetic property of Co-doped La0.8Sr0.2MnO3 perovskite manganese oxides [J]. J. Inorg. Mater., 2018, 33: 1237
[19] 刘 娇, 王文清, 吴鸿业等. Co掺杂钙钛矿锰氧化物La0.8Sr0.2-MnO3电磁特性研究 [J]. 无机材料学报, 2018, 33: 1237
[20] Sahoo R C, Paladhi D, Nath T K. Evidence of spin-glass like ordering and exchange bias effect in antisite-disordered nanometric La1.5Ca0.5CoMnO6 double perovskite [J]. J. Magn. Magn. Mater., 2017, 436: 77
[21] Liu F, Gao Y, Chang H, et al. Control of magnetic properties and band gap by Co/Mn ordering and oxygen distributions of La2CoMnO6 [J]. J. Magn. Magn. Mater., 2017, 435: 217
[22] Ritter C, Ibarra M R, Morellon L, et al. Structural and magnetic properties of double perovskites AA’FeMoO6 (AA’= Ba2, BaSr, Sr2 and Ca2) [J]. J. Phys. Conden. Matter, 2000, 12: 8295
[23] Sun X D, Xu B, Wu H Y, et al. Magnetic entropy change and electrical transport properties of rare earth Tb doped manganites La4/3Sr5/3Mn2O7 [J]. Acta Phys. Sin., 2017, 66: 264
[23] 孙晓东, 徐 宝, 吴鸿业等. Tb掺杂双层锰氧化物La4/3Sr5/3Mn2O7的磁熵变和电输运性质 [J]. 物理学报, 2017, 66: 264
[24] Sun N K, Zhong D H, Ren Z X, et al. Room-temperature magnetocalor effect and magneto-resistance effect of Co0.525Fe0.475MnP compound [J]. Chin. J. Mater. Res., 2019, 33(2): 124
[24] 孙乃坤, 仲德晗, 任增鑫等. Co0.525Fe0.475MnP化合物的室温磁热效应和磁电阻效应 [J]. 材料研究学报, 2019, 33(2): 124
[25] Gao B B, Zhong X C, Zheng Z G, et al. Structure and large magnetic entropy change of melt-Spun La1-xCex(Fe0.92Co0.08)11.4Si1.6 alloy [J]. Chin. J. Mater. Res., 2012, 26(5): 511
[25] 高贝贝, 钟喜春, 郑志刚等. 熔体快淬La1-xCex(Fe0.92Co0.08)11.4Si1.6合金的结构和大磁熵变 [J]. 材料研究学报, 2012, 26(5): 511
[26] Jin X, Sun X D, Cao F Z, et al. Magnetic properties and magnetic entropy change of perovskite manganites La0.875Eu0.025Sr0.1MnO3 [J]. J. Chin. Rare Earth Soc., 2018, 36: 667
[26] 金 香, 孙晓东, 曹凤泽等. 钙钛矿锰氧化物La0.875Eu0.025Sr0.1MnO3的磁性和磁卡效应研究 [J]. 中国稀土学报, 2018, 36: 667
[27] Li X X, Liu J, Wang T, et al. Magnetic and magnetocaloric effects of Ce-doped perovskite oxide Gd2NiMnO6 [J]. Funct. Mater., 2019, 50: 8109
[27] 李晓欣, 刘 娇, 王 婷等. Ce掺杂钙钛矿氧化物Gd2NiMnO6的磁性与磁热效应 [J]. 功能材料, 2019, 50: 8109
[28] Banerjee B K. On a generalised approach to first and second order magnetic transitions [J]. Phys. Lett., 1964, 12: 16
[29] Mira J, Rivas J. First-order magnetic phase transitions and colossal magnetoresistance: Joining manganese perovskites and MnAs [J]. Mod. Phys. Lett., 2004, 18B: 725
[30] Jiang S T, Li W. Condensed Magnetic Physics [M]. Beijing: Science Press, 2003
[30] 姜寿亭, 李 卫. 凝聚态磁性物理 [M]. 北京: 科学出版社, 2003
[31] Marsh A, Clark C C. Metamagnetism in the perovskite compound Gd2CoMnO6 [J]. Philos. Magaz., 1969, 19: 449
[32] Pradheesh R, Nair H S, Sankaranarayanan V, et al. Exchange bias and memory effect in double perovskite Sr2FeCoO6 [J]. Appl. Phys. Lett., 2012, 101: 142401
[33] Hu H B. Application analysis of important parameters of magnetic hysteresis loop [J]. Enterpr. Sci. Technol. Dev., 2018, (6): 170
[33] 胡海波. 磁性材料磁滞回线重要参数的应用分析 [J]. 企业科技与发展, 2018, (6): 170
[34] Hou F F. Study properties on synthesis, structure and magnetic of perovskite manganite Sm0. 5Ca0.5Mn 1-xFexO3 [D]. Harbin: Northeast Forestry University, 2015
[34] 侯菲菲. 钙钛矿锰氧化物Sm0.5Ca0.5Mn1-xFexO3的制备、结构表征及磁性研究 [D]. 哈尔滨: 东北林业大学, 2015
[35] Zhang H L, Li Z, Qiao Y F, et al. Martensitic transformation and magnetocaloric effect in Ni-Co-Mn-Sn heusler alloy [J]. Acta Phys. Sin., 2009, 58: 7857
[35] 张浩雷, 李 哲, 乔燕飞等. 哈斯勒合金Ni-Co-Mn-Sn的马氏体相变及其磁热效应研究 [J]. 物理学报, 2009, 58: 7857
[1] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[4] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[5] 李延伟, 罗康, 姚金环. Ni(OH)2 负极材料的十二烷基硫酸钠辅助制备及其储锂性能[J]. 材料研究学报, 2023, 37(6): 453-462.
[6] 余谟鑫, 张书海, 朱博文, 张晨, 王晓婷, 鲍佳敏, 邬翔. N掺杂生物炭的制备及其对Co2+ 的吸附性能[J]. 材料研究学报, 2023, 37(4): 291-300.
[7] 朱明星, 戴中华. SrSc0.5Nb0.5O3 改性BNT基无铅陶瓷的储能特性研究[J]. 材料研究学报, 2023, 37(3): 228-234.
[8] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[9] 周毅, 涂强, 米忠华. 制备方法对磷酸盐微晶玻璃结构和性能的影响[J]. 材料研究学报, 2023, 37(10): 739-746.
[10] 谢锋, 郭建峰, 王海涛, 常娜. ZnO/CdS/Ag复合光催化剂的制备及其催化和抗菌性能[J]. 材料研究学报, 2023, 37(1): 10-20.
[11] 余超, 邢广超, 吴郑敏, 董博, 丁军, 邸敬慧, 祝洪喜, 邓承继. 亚微米Al2O3 对重结晶碳化硅的作用机制[J]. 材料研究学报, 2022, 36(9): 679-686.
[12] 方向明, 任帅, 容萍, 刘烁, 高世勇. 自供能Ag/SnSe纳米管红外探测器的制备和性能研究[J]. 材料研究学报, 2022, 36(8): 591-596.
[13] 李福禄, 韩春淼, 高嘉望, 蒋健, 许卉, 李冰. 氧化石墨烯的变温发光[J]. 材料研究学报, 2022, 36(8): 597-601.
[14] 朱晓东, 夏杨雯, 喻强, 杨代雄, 何莉莉, 冯威. Cu掺杂金红石型TiO2 的制备及其光催化性能[J]. 材料研究学报, 2022, 36(8): 635-640.
[15] 熊庭辉, 蔡文汉, 苗雨, 陈晨龙. ZnO纳米棒阵列和薄膜的同步外延生长及其光电化学性能[J]. 材料研究学报, 2022, 36(7): 481-488.