Please wait a minute...
材料研究学报  2019, Vol. 33 Issue (11): 831-836    DOI: 10.11901/1005.3093.2019.289
  研究论文 本期目录 | 过刊浏览 |
苯乙烯/异戊二烯渐变嵌段共聚物的负离子法合成和性能
廖明义(),徐晓川
大连海事大学交通运输工程学院 材料科学与工程系 大连 116026
Anionic Synthesis and Dynamic Mechanical Poperties of Styrene/Isoprene Copolymers with Gradient Blocks
LIAO Mingyi(),XU Xiaochuan
Department of Materials Science and Engineering, College of Transportation Engineering, Dalian Maritime University, Dalian 116026, China
引用本文:

廖明义,徐晓川. 苯乙烯/异戊二烯渐变嵌段共聚物的负离子法合成和性能[J]. 材料研究学报, 2019, 33(11): 831-836.
Mingyi LIAO, Xiaochuan XU. Anionic Synthesis and Dynamic Mechanical Poperties of Styrene/Isoprene Copolymers with Gradient Blocks[J]. Chinese Journal of Materials Research, 2019, 33(11): 831-836.

全文: PDF(1671 KB)   HTML
摘要: 

一次加料延时加入极性结构调节剂四氢呋喃(THF)、以正丁基锂(n-BuLi)为引发剂、环己烷为溶剂,用活性负离子聚合技术合成了具有渐变嵌段结构的苯乙烯(St)/异戊二烯(Ip)共聚物(S/I)。使用核磁共振氢谱(1H-NMR)和动态粘弹谱(DMA)等仪器表征共聚物的微观结构并测定共聚物的动态力学性能,研究了THF的加入时间和St含量对S/I共聚物微观结构和性能的影响。结果表明,加入THF的时间显著影响共聚物的微观结构、力学和动态力学性能。控制THF的加入时间能调控St和Ip单体的共聚合活性从而调控共聚物的微观结构和共聚物的组成及其分布,生成具有渐变嵌段结构的S/I共聚物,拓宽共聚物的玻璃化转变温度(Tg)区间。对S/I共聚物的结构和性能的变化过程也进行了理论分析。

关键词 有机高分子材料苯乙烯/异戊二烯共聚物负离子聚合合成渐变嵌段结构动态力学性能    
Abstract

The styrene (St)/isoprene (Ip) copolymers (S/I) with gradient blocks were synthesized by a one-step anionic polymerization technique with cyclohexane as solvent, n-butyl lithium (n-BuLi) as initiator and tetrahydrofuran (THF) as polar structure regulator. The microstructures and dynamic mechanical properties of synthesized S/I copolymers were characterized by 1H-NMR and dynamic mechanic analysis (DMA), respectively. The effect of the time of THF addition and St content on the microstructure and the properties of S/I copolymers were investigated. The results show that the time of THF addition had a great effect on the microstructure, mechanical and dynamic properties of S/I copolymers, and the proper time of THF addition may be beneficial to modulate the copolymerization activity of St and Ip, and further modulate the microstructure and composition of the copolymers, therefore, S/I copolymers with gradient blocks could finally form, which possess broadened glass transition region and damping range. The evolution of structure and the properties of S/I copolymers were also analyzed theoretically.

Key wordsorganic polymer materials    styrene/isoprene copolymers    anionic polymerization    synthesis    gradient block structure    dynamic mechanical properties
收稿日期: 2019-06-05     
ZTFLH:  TQ333.99  
作者简介: 廖明义,男,1962年生,博士,教授
图1  S/I共聚物的1H-NMR谱图
abcd
Chemical Shift (ppm)7.40~7.106.50~6.755.20~4.814.81~4.40
Assignment-CH- of benzene ring in random S/I copylymer-CH- of benzene ring in block S/I copylymer=CH- of 1,4-units and =CH2 of 1,2-units=CH2 of 3,4-units and
表1  S/I共聚物的1H-NMR谱图归属
Sample No.123456789
S/I25/7525/7525/7525/7525/7525/7525/7525/7525/75
THF addition time/min57891012152030
St contents24.524.424.126.425.725.924.626.327.0
St block contents2.02.63.05.35.79.511.614.014.0
1,2-Ip contents0.60.10.30.70.60.00.00.00.0
1,4-Ip contents82.384.386.586.286.390.791.490.390.8
3,4-Ip contents17.115.613.213.113.19.38.89.09.0
表2  调节剂加入时间对S/I共聚物微观结构含量的影响
Sample No.1011112513
S/I30/7025/7520/8030/7025/7520/80
THF addition time/min555101010
St contents27.824.519.530.025.718.6
St block contents1.72.01.83.35.76.1
1,2-Ip contents0.70.60.00.70.60.0
1,4-Ip contents82.382.386.380.086.390.8
3,4-Ip contents17.017.113.719.313.19.2
表3  St含量对S/I共聚物微观结构含量的影响
Sample No.123456789
Shore hardness747678828887888686
Tensile strength/MPa18.117.817.717.417.017.116.216.116.2
Tear strength/N·mm-1323233383638363837
Elongation at break/%406401360341348342276264270
表4  调节剂加入时间对S/I共聚物力学性能的影响
图2  调节剂的加入时间对S/I共聚物动态力学性能的影响
图3  调节剂的加入时间对S/I共聚物动态力学性能的影响
Sample No.1011112513
Shore hardness727468828880
Tensile strength/MPa19.418.115.817.317.015.7
Tear strength/N·mm-1343233343636
Elongation at break/%454406377363358345
tanδmax0.470.570.870.500.440.62
表5  St含量对S/I共聚物力学和动态力学性能的影响
图4  St含量对S/I共聚物动态力学性能的影响
图5  共聚物S/I链结构的示意图
[1] Pu W J, Li X D, Wang Q H. Relationship between acoustical absorptivity and viscoelasticity of acoustical absorptive polymer [J]. Polm. Mater. Sci. Eng., 2011, 27(12): 86
[1] (浦文婧, 李效东, 王清华. 高分子吸声材料吸声性能与粘弹性之间的关系 [J]. 高分子材料科学与工程, 2011, 27(12): 86)
[2] Xu X C, Liao M Y, Wang N N, et al. Synthesis of random solution-polymerized styrene-isoprene rubber and its damping property [J]. China Synth. Rub. Indus., 2016, 39(2): 93
[2] (徐晓川, 廖明义, 王妮妮等. 无规溶聚戊苯橡胶的合成及其阻尼性能 [J]. 合成橡胶工业, 2016, 39(2): 93)
[3] Zang C, Pal K, Byeon J U, et al. A study on mechanical and thermal properties of silicone rubber/EPDM damping materials [J]. J. Appl. Polym. Sci., 2011, 119: 2737
[4] Lu X, Li X J, Tian M. Preparation of high damping elastomer with broad temperature and frequency ranges based on ternary rubber blends [J]. Polym. Adv. Technol., 2014, 25: 21
[5] Hu R, Dimonie V L, El-Aasser M S, et al. Multicomponent latex IPN materials: 2. Damping and mechanical behavior [J]. J. Appl. Polym. Sci., 1997, 35B: 1501
[6] Pakula T, Matyjaszewski K. Copolymers with controlled distribution of comonomers along the chain, 1. Structure, thermodynamics and dynamic properties of gradient copolymers. Computer simulation [J]. Macromol. Theory Simul., 1996, 5: 987
[7] Hashimoto T, Tsukahara Y, Tachi K, et al. Structure and properties of tapered block polymers. 4. "Domain-boundary mixing" and "mixing-in-domain" effects on microdomain morphology and linear dynamic mechanical response [J]. Macromolecules, 1983, 16: 648
[8] Gronski W, Annighofer F, Stadler R. Structure and properties of phase boundaries in block copolymers [J]. Makromol. Chem., 1984, 6: 141
[9] Jouenne S, González-León J A, Ruzette A V, et al. Styrene/butadiene gradient block copolymers: molecular and mesoscopic structures [J]. Macromolecules, 2007, 402432
[10] Liao M Y, Xu X C. Synthesis of styrene/butadiene tapered block copolymer and its dynamic mechanical properties [J]. China Rub. Plast. Tech. Equip. (Plastics), 2015, 41(24): 8
[10] (廖明义, 徐晓川. 苯乙烯/丁二烯渐变嵌段共聚物的合成及其动态力学性能的研究[J]. 橡塑技术与装备(塑料), 2015, 41(24): 8)
[11] Liao M Y, Wang Q F, Wang N N, et al. Preparation and dynamic mechanical properties of copolymers based on butadiene, isoprene, and styrene [J]. Polym. Sci. Ser., 2014, 56B: 753
[12] Wang N N, Wang Q F, Liao M Y, al el. The application of structure modifiers in synthesis of diene rubber [J]. China Elast., 2006, 16(2): 51
[12] (王妮妮, 王启飞, 廖明义等. 二烯类橡胶合成反应中的结构调节剂 [J]. 弹性体, 2006, 16(2): 51)
[13] Young R N, Quirk R P, Fetters L J, et al. Anionic polymerizations of non-polar monomers involving lithium [A]. Anionic Polymerization [C]. Berlin: Springer, 1984, 56: 1
[1] 叶姣凤, 王飞, 左洋, 张钧翔, 罗晓晓, 冯利邦. 兼具高强度、高韧性和自修复性能的环氧树脂改性热可逆聚氨酯[J]. 材料研究学报, 2023, 37(4): 257-263.
[2] 李瀚楼, 焦晓光, 朱欢欢, 赵晓欢, 矫庆泽, 冯彩虹, 赵芸. 支链含氟聚酯的合成和性能[J]. 材料研究学报, 2023, 37(4): 315-320.
[3] 马逸舟, 赵秋莹, 杨路, 裘进浩. 热塑型聚酰亚胺/聚偏氟乙烯全有机复合薄膜的制备及其介电储能[J]. 材料研究学报, 2023, 37(2): 89-94.
[4] 周海涛, 侯湘武, 汪彦博, 肖旅, 袁勇, 孙京丽. Nb-TiAl合金的高温变形行为及其板材的性能[J]. 材料研究学报, 2022, 36(6): 471-480.
[5] 闫福照, 李静, 熊良银, 刘实. FeCr-ODS铁素体合金的氧化+粉锻工艺制备及其微观结构[J]. 材料研究学报, 2022, 36(6): 461-470.
[6] 殷洁, 胡云涛, 刘慧, 杨逸霏, 王艺峰. 基于电沉积技术构建聚苯胺/海藻酸膜及电化学性能研究[J]. 材料研究学报, 2022, 36(4): 314-320.
[7] 申延龙, 李北罡. 磁性氨基酸功能化海藻酸铝凝胶聚合物的制备及对偶氮染料的超强吸附[J]. 材料研究学报, 2022, 36(3): 220-230.
[8] 龙庆, 王传洋. 不同碳黑含量PMMA的热降解行为和动力学分析[J]. 材料研究学报, 2022, 36(11): 837-844.
[9] 蒋平, 吴丽华, 吕太勇, José Pérez-Rigueiro, 王安萍. 蜘蛛大壶状腺丝的反复拉伸力学行为和性能[J]. 材料研究学报, 2022, 36(10): 747-759.
[10] 鄢俊, 杨进, 王涛, 徐桂龙, 李朝晖. 有机硅油改性水性酚醛的制备及其性能[J]. 材料研究学报, 2021, 35(9): 651-656.
[11] 赵万里, 索红莉, 刘敏, 马麟, 戴银明, 张子立. 用扩散法制备MgB2块材的研究进展[J]. 材料研究学报, 2021, 35(6): 411-418.
[12] 张昊, 李帆, 常娜, 王海涛, 程博闻, 王攀磊. 羧酸型接枝淀粉吸附树脂的制备和对染料的去除性能[J]. 材料研究学报, 2021, 35(6): 419-432.
[13] 孙丽颖, 钱建华, 赵永芳. AgNWs-TPU/PVDF柔性薄膜电容传感器的制备和性能[J]. 材料研究学报, 2021, 35(6): 441-448.
[14] 唐开元, 黄洋, 黄湘舟, 葛颖, 李娉婷, 袁凡舒, 张威威, 孙东平. 碳化细菌纤维素的理化性质及其在甲醇电催化中的应用[J]. 材料研究学报, 2021, 35(4): 259-270.
[15] 胡满银, 欧阳德来, 崔霞, 杜海明, 徐勇. 微波烧结原位合成TiC增强钛复合材料的性能[J]. 材料研究学报, 2021, 35(4): 277-283.