Please wait a minute...
材料研究学报  2019, Vol. 33 Issue (11): 874-880    DOI: 10.11901/1005.3093.2019.249
  研究论文 本期目录 | 过刊浏览 |
微量Cu和形变热处理对Al-Fe合金性能的影响
王海生1(),闵洁1,王云1,邓可月2
1. 红河学院机械工程系 蒙自 661100
2. 江西博能上饶客车有限公司 上饶 334100
Effect of Minor-Cu Addition and Thermomechanical Treatment on Properties of Al-Fe Alloy
WANG Haisheng1(),MIN Jie1,WANG Yun1,DENG Keyue2
1. Department of Mechanical Engineering, Honghe University, Mengzi 661100, China
2. Jiangxi Boneng Shangrao Bus Co. Ltd. , Shangrao 334100, China
引用本文:

王海生,闵洁,王云,邓可月. 微量Cu和形变热处理对Al-Fe合金性能的影响[J]. 材料研究学报, 2019, 33(11): 874-880.
Haisheng WANG, Jie MIN, Yun WANG, Keyue DENG. Effect of Minor-Cu Addition and Thermomechanical Treatment on Properties of Al-Fe Alloy[J]. Chinese Journal of Materials Research, 2019, 33(11): 874-880.

全文: PDF(4263 KB)   HTML
摘要: 

观察Al-Fe合金的显微组织并测量其力学性能和导电性能,研究了Cu元素和形变热处理对其性能的影响。结果表明:在铸态Al-Fe-Cu合金组织中,Cu元素在基体内均匀分布,而Fe元素在晶界处偏析;挤压态的Al-0.7Fe-0.2Cu合金其性能最优:导电率为59.90%IACS,抗拉强度为108 MPa,硬度为31.2HV;随着退火温度的提高Al-0.7Fe-0.2Cu合金的抗拉强度急剧降低,在400℃退火时其抗拉强度最低(100 MPa),伸长率最高(31.3%);在250℃退火时导电率出现峰值(62.61%IACS)。在退火Al-0.7Cu-0.2Cu合金中有许多细小针状的θ(Al2Cu)相析出,并与位错交互缠结。随着退火温度的提高合金中的位错密度降低,晶粒细化。

关键词 Al-Fe-Cu合金抗拉强度导电率伸长率θ(Al2Cu)析出相    
Abstract

The effect of minor-Cu addition and thermomechanical treatment on the microstructure and properties of Al-Fe alloy was investigated by means of optical microscopy, SEM, tensile test, and conductivity measurement. The results show that Cu was evenly distributed in the matrix of as-cast Al-Fe-Cu alloy, while the Fe segregated at grain boundary. After extrusion the properties of Al-0.7Fe-0.2Cu alloy reached the optimum, the conductivity was 59.90% IACS, the tensile strength was 108 MPa, and the hardness was 31.2HV. The tensile strength of Al-0.7Fe-0.2Cu alloy decreased sharply with the increase of annealing temperature. The tensile strength was the lowest (100 MPa) after annealing at 400℃, while the elongation was the highest (31.3%). The peak electrical conductivity of Al-0.7Fe-0.2Cu alloy was 62.61% IACS after annealing at 250℃. In addition, many fine needle-like θ(Al2Cu) phase precipitated during annealing in Al-0.7Cu-0.2Cu alloy, which interacted with dislocations. With the increase of annealing temperature, dislocation density decreased and grain refinement occurred.

Key wordsAl-Fe-Cu alloy    tensile strength    electrical conductivity    elongation    θ (Al2Cu) precipitate
收稿日期: 2019-05-13     
ZTFLH:  TG162.83  
基金资助:云南省高校联合青年项目(2017FH001-119);云南省应用基础研究计划(2018FD089)
作者简介: 王海生,男,1979年生,博士
AlloyFeCuAl
A0.70.2Bal.
B0.90.2Bal.
C0.70.4Bal.
表1  Al-Fe合金的化学成分
图1  铸态Al-Fe-Cu合金的金相形貌
图2  铸态A号合金的扫描形貌和元素的面分布
图3  铸态A合金的SEM形貌
PositionAlFeCu
183.1115.131.76
295.114.690.20
394.774.500.73
499.650.190.16
表2  图3中不同区域的化学成分
图4  Al-Fe-Cu合金铸态的DSC曲线
图5  Al-Fe-Cu合金均匀化态的显微组织
AlloyConductivity/%IACSTensile strength/MPa

Hardness

(HV)

A59.90108.031.20
B58.68111.035.40
C55.71119.032.60
表3  挤压态Al-Fe-Cu合金的性能
图6  合金挤压态的TEM形貌
图7  在不同温度退火后冷拉态A合金的电导率
图8  在不同温度退火后冷拉态A合金的抗拉强度和伸长率
图9  在不同温度退火后A合金的TEM照片
[1] Jiang X Y, Zhang Y, Yi D Q, et al. Low-temperature creep behavior and microstructural evolution of 8030 aluminum cables [J]. Mater. Charact., 2017, 130: 181
[2] Gao M W. A study on solidification microstructure of high purity Al-Fe binary alloy [D]. Shenyang: Northeastern University, 2013
[2] (高明伟. 高纯Al-Fe二元合金凝固组织研究 [D]. 沈阳: 东北大学, 2013)
[3] Li W H. Study on microstructure and properties of Al-Fe-Cu alloy for wire and cable [D]. Changsha: Central South University, 2012
[3] (李卫红. 电线电缆用Al-Fe-Cu合金组织与性能的研究 [D]. 长沙: 中南大学, 2012)
[4] Zhou Z P, Li R D, Ma J C. Effect of Cr and Mg on the morphology of primary phase in Al-0.5%Fe alloy [J]. J. Shenyang Univ. Technol., 2008, (3): 284
[4] 周振平, 李荣德, 马建超. Cr和Mg对Al-5%Fe合金中初生相形貌的影响 [J]. 沈阳工业大学学报, 2008, (3): 284)
[5] Li W H, Yang F L, Zang B, et al. Effect of annealing on microstructure and mechanical properties of cold drawn A1-0.7Fe-0.2Cu alloy [J]. Hot Work. Technol., 2012, 41(22): 172
[5] 李卫红, 杨伏良, 臧 冰等. 退火对冷拉拔Al-0.7Fe-0.2Cu合金组织性能的影响 [J]. 热加工工艺, 2012, 41(22): 172
[6] Kong X X, Zhang H, Ji X K. Microstructures and mechanical properties evolution of an Al-Fe-Cu alloy processed by repetitive continuous extrusion forming [J]. Mater. Sci. Eng., 2014, 612A: 131
[7] Goulart P R, Lazarine V B, Leal C V, et al. Investigation of intermetallics in hypoeutectic Al-Fe alloys by dissolution of the Al matrix [J]. Intermetallics, 2009, 17: 753
[8] Birol Y. Thermomechanical processing of a twin-roll cast al-1fe-0.2si alloy [J]. J. Mater. Proc. Technol., 2008, 202: 564
[9] Guo L, Yi D Q, Zang B, et al. Effect of extrusion ratio on microstructure and electrical properties of AA8030 aluminum alloy rod [J]. Chin. J. Nonferrous Met., 2013, 23: 2083
[9] (郭 磊, 易丹青, 臧 冰等. 挤压比对AA8030铝合金棒材组织及电性能的影响 [J]. 中国有色金属学报, 2013, 23: 2083)
[10] Deng X B, Jiang X Y, Wang B. Effect of Fe and Cu content on microstructure and properties of Al-Fe-Cu alloy for cables [J]. Light Alloy Process. Technol., 2016, 44(12): 29
[10] (邓显波, 江新洋, 王 斌. 铁、铜含量对电缆用Al-Fe-Cu合金组织和性能的影响 [J]. 轻合金加工技术, 2016, 44(12): 29)
[11] Mansourinejad M, Mirzakhani B. Influence of sequence of cold working and aging treatment on mechanical behaviour of 6061 aluminum alloy [J]. Trans. Nonferrous Met. Soc. China, 2012, 22: 2072
[12] Kang B S, Zhen L, Kim W H, et al. Effect of cold rolling and aging treatment on mechanical property and precipitation behavior in a Al-Mg-Si alloy [J]. Mater. Sci. Forum, 1996, 217-222: 827
[13] Lipińska M, Bazarnik P, Lewandowska M. The influence of severe plastic deformation processes on electrical conductivity of commercially pure aluminium and 5483 aluminium alloy [J]. Arch. Civil Mech. Eng., 2016, 16: 717
[14] Murashkin M Y, Sabirov I, Medvedev A E, et al. Mechanical and electrical properties of an ultrafine grained Al-8.5wt. % RE (RE=5.4wt. % Ce, 3.1 wt. % La) alloy processed by severe plastic deformation [J]. Mater. Des., 2016, 90: 433
[15] Hou J P, Chen Q Y, Wang Q, et al. Effects of annealing treatment on the microstructure evolution and the strength degradation behavior of the commercially pure Al conductor [J]. Mater. Sci. Eng., 2017, 707A: 511
[16] Zhang J Y, Ma M Y, Shen F H, et al. Influence of deformation and annealing on electrical conductivity, mechanical properties and texture of Al-Mg-Si alloy cables [J]. Mater. Sci. Eng., 2018, 710A: 27
[17] Buranova Y, Kulitskiy V, Peterlechner M, et al. Al3 (Sc, Zr)-based precipitates in Al-Mg alloy: Effect of severe deformation [J]. Acta Mater., 2017, 124: 210
[18] ?ad?rl? E, Tecer H, ?ahin M, et al. Effect of heat treatments on the microhardness and tensile strength of Al-0.25wt.% Zr alloy [J]. J. Alloys Compd., 2015, 632: 229
[19] Wang X F, Guo M X, Zhang Y, et al. The dependence of microstructure, texture evolution and mechanical properties of Al-Mg-Si-Cu alloy sheet on final cold rolling deformation [J]. J. Alloys Compd., 2016, 657: 906
[1] 董洪波, 姜智勇, 周盛武, 张坤, 刘洪骁. 预时效对TB8钛合金超塑性的影响[J]. 材料研究学报, 2018, 32(7): 541-546.
[2] 罗雪梅, 余虹云, 李瑞, 宋竹满, 王强, 张哲峰, 张广平. 拉拔和轧制变形铝导线的结构演化及力学与导电性能[J]. 材料研究学报, 2018, 32(5): 357-364.
[3] 杨镇骏, 孙红亮, 黄泽文, 朱德贵, 王良辉. 表面处理对近片层γ-TiAl合金拉伸性能的影响*[J]. 材料研究学报, 2016, 30(1): 75-80.
[4] 褚旭明 王辉 何德坪 何思渊. 泡沫铝合金异型件形成过程中的冶金结合[J]. 材料研究学报, 2009, 23(1): 27-31.
[5] 班丽丽 惠卫军 雍岐龙 翁宇庆 董瀚. 不同强度中碳TRIP钢的高周疲劳破坏行为[J]. 材料研究学报, 2008, 22(6): 629-633.
[6] 许道奎; 彭林; 刘路; 徐永波 . 热处理条件对锻造ZK60-Y镁合金力学性能的影响[J]. 材料研究学报, 2005, 19(6): 577-580.
[7] 曹志强; 张兴国; 贾非; 郝海; 金俊泽 . 电磁铸造铝合金锭的力学性能[J]. 材料研究学报, 2002, 16(6): 635-639.
[8] 高明; 何冠虎; 杨菲; 郭敬东; 原正兴; 水丽 ; 周本濂 . 强脉冲电流对铸造ZA27合金性能的影响[J]. 材料研究学报, 2002, 16(1): 72-76.
[9] 陈永贤;刘国禄;张彩碚;孙福成;赖祖涵. 可伐合金与无氧铜复合材料的研制[J]. 材料研究学报, 1989, 3(2): 138-142.