Please wait a minute...
材料研究学报  2019, Vol. 33 Issue (10): 794-800    DOI: 10.11901/1005.3093.2019.164
  研究论文 本期目录 | 过刊浏览 |
Ti750合金中初生α相的体积分数对固溶温度的敏感性
陈朝阳1,2,陈志勇1,朱绍祥1,刘建荣1(),王清江1
1. 中国科学院金属研究所 沈阳 110016
2. 中国科学技术大学材料科学与工程学院 沈阳 110016
Solution Temperature Sensitivity for Primary α-Phase Volume Fraction of Ti750 Alloys
CHEN Chaoyang1,2,CHEN Zhiyong1,ZHU Shaoxiang1,LIU Jianrong1(),WANG Qingjiang1
1. Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2. School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
引用本文:

陈朝阳,陈志勇,朱绍祥,刘建荣,王清江. Ti750合金中初生α相的体积分数对固溶温度的敏感性[J]. 材料研究学报, 2019, 33(10): 794-800.
Chaoyang CHEN, Zhiyong CHEN, Shaoxiang ZHU, Jianrong LIU, Qingjiang WANG. Solution Temperature Sensitivity for Primary α-Phase Volume Fraction of Ti750 Alloys[J]. Chinese Journal of Materials Research, 2019, 33(10): 794-800.

全文: PDF(6505 KB)   HTML
摘要: 

研究了Ti750合金中初生α相的体积分数对固溶温度变化的敏感性。结果表明,在α+β两相区热处理的Ti750合金中初生α相的体积分数随着热处理温度的提高呈现先慢后快的下降趋势;合金中Mo元素的含量由0.25%(质量分数,下同)提高到1.0%使初生α相体积分数对固溶温度变化的敏感性降低。用电子探针分析了Al和Mo元素在初生α相中的分布,结果表明:在初生α相含量相同的合金中,Mo元素含量的提高使初生α相中的Al元素富集,使初生α相具有更高的热力学稳定性,从而降低了αp相体积分数对固溶温度变化的敏感性,有利于准确控制热加工和热处理组织。

关键词 金属材料钛合金固溶温度电子探针初生α敏感性    
Abstract

Solution temperature (T) sensitivity for the volume fraction (V) of primary α-phase in the α+β-phase field of two Ti750 alloys with 0.25 Mo and 1.0 Mo (mass fraction%) were comparatively investigated. The results show that the variation of volume fraction of primary α-phase with temperature seems to follow a negative power function curve, with a slow initial reduction and then rapid reduction with the increase of temperature for both alloys. The V-T curve for the alloy with 0.25% Mo showed a steeper slope compared with the alloy with 1.0% Mo, indicating that with the increase of Mo addition, the decrease of solution temperature sensitivity may emerge for the volume fraction of the primary α-phase in the α+β-phase field of Ti750 alloys. In the two alloys with the same volume fraction of primary α-phase, the Al concentration in the primary α-phase of the alloy with 1.0% Mo is higher than that of alloy with 0.25 % Mo. In other word, Mo indirectly increases the thermodynamic stability of the primary α-phase and thus reduces the temperature sensitivity of the volume fraction of α-phase in Ti750 alloy.

Key wordsmetallic materials    titanium alloy    solution temperature    EPMA    primary α-phase    sensitivity
收稿日期: 2019-03-21     
ZTFLH:  TG146.2  
作者简介: 陈朝阳,男,1991年生,硕士
图1  Ti750合金精锻棒材的显微组织
图2  在不同温度固溶热处理后Ti750合金的显微组织
图3  αp相体积分数随温度的变化
图4  αp相体积分数为60%时Al、Mo、W元素的面分布
Alloysαp/%12345Average
Ti750-1206.0216.1326.1826.2156.356.18
405.4615.7465.8315.8595.8785.755
605.2895.3245.4075.7145.8355.514
Ti750-2206.1176.1826.2166.2496.3036.213
406.0486.1076.1966.2286.2996.175
606.0096.0246.046.1466.2486.09
表1  αp相中Al元素含量(质量分数)
图5  不同体积分数αp相中的Al元素含量
图6  钛合金的V-T曲线示意图
图7  在930℃热处理时αp相的体积分数随保温时间(τ)的变化
图8  钛合金Ti-Mo二元相图的示意图
[1] Wang Q J, Liu J R, Yang R. High temperature titanium alloys: status and perspective [J]. J. Aero. Mater., 2014, 34(04): 1
[1] 王清江, 刘建荣, 杨 锐. 高温钛合金的现状与前景 [J]. 航空材料学报, 2014, 34(4): 1
[2] Zhu L P, Li J C, Mo X F ,et al. Effect of annealing on microstructure and tensile property of cast TG6 high-temperature Ti-based alloy [J]. Iron Steel Vanadium Titanium, 2017, 38(01): 43
[2] 朱郎平, 李建崇, 莫晓飞等. 热处理对高温钛合金TG6铸造组织及性能的影响 [J]. 钢铁钒钛, 2017, 38(01): 43
[3] Rong X D, Huang L J, Wang B ,et al. Effects of heat treatment on microstructure and mechanical properties of Ti60 alloy with Widmanstatten microstructure [J]. T. Mater. Heat Treat., 2015, 36(10): 39
[3] 戎旭东, 黄陆军, 王 博等. 热处理对魏氏组织Ti60钛合金组织与性能的影响 [J]. 材料热处理学报, 2015, 36(10): 39
[4] Leyens C., Peter M.. Titanium and Titanium Alloys [M]. Weinheim: Die Deutsche Bibliothek, 2006
[5] Davies P., Pederson R., Coleman M. ,et al. The hierarchy of microstructure parameters affecting the tensile ductility in centrifugally cast and forged Ti-834 alloy during high temperature exposure in air [J]. Acta Mater., 2016, 117: 51
[6] Froes F.H.. Titanium: Physical Metallurgy Processing and Applications [M]. Ohio: ASM International, 2015: 113
[7] Neal D.F.. Development and evaluation of high temperature titanium alloy IMI834 [J]. in: Proceedings of the 6th World Conference on Titanium, 1988: 253
[8] Leyens C, Peters M, translated by Chen Z H. Titanium and Titanium Alloy [M]. Beijing: Chemical Industry Press, 2005: 88
[8] Leyens C, Peters M著, 陈振华译. 钛与钛合金 [M]. 北京: 化学工业出版社, 2005: 88
[9] Eylon D., Fujishiro S., Postans P.J. ,et al. High-temperature titanium alloys-a review [J]. JOM, 1984, 36(11): 55
[10] Ahmed Mansur, Wexler David, Casillas Gilberto ,et al. The influence of β phase stability on deformation mode and compressive mechanical properties of Ti-10V-3Fe-3Al alloy [J]. Acta Mater., 2015, 84: 124
[11] Evans R. W., Hull R. J., Wilshire B. The effects of alpha-cast formation on the creep fracture properties of the high-temperature titanium alloy IMI834 [J]. J. Mater. Process. Tech., 1996, 56: 492
[12] Neal D. F. Proceeding of the fifth international conference on titanium congress-centre [J]. Titan. Sci. Tech., 1985: 2419
[13] Zhang S Z, Wang B, Liu Z Q, et al. Effect of carbon on the microstructure and mechanical properties of Ti-60 high temperature titanium alloy [J]. Chin. J. Mater. Res., 2007, 21(04): 433
[13] 张尚洲, 王 波, 刘子全等. 碳对高温钛合金Ti-60组织和性能的影响 [J]. 材料研究学报, 2007, 21(04): 433
[14] Oh S T, Woo K D, Kim J H ,et al. The effect of Al and V on microstructure and transformation of beta phase during solution treatments of cast Ti-6Al-4V alloy [J]. Korean J. Met. Mater., 2017, 55(03): 150
[15] Zeng L R, Chen H L, Li X ,et al. Influence of alloy element partitioning on strength of primary α phase in Ti-6Al-4V alloy [J]. J. Mater. Sci. Tech., 2018, 34(05): 782
[16] Xue Q, Ma Y J, Lei J F ,et al. Evolution of microstructure and phase composition of Ti-3Al-5Mo-4.5V alloy with varied β phase stability [J]. J.Mater. Sci. Tech., 2018, 34(12): 2325
[17] Menguccia P., Gattob A., Bassolib E., et al. Effects of build orientation and element partitioning on microstructure and mechanical properties of biomedical Ti-6Al-4V alloy produced by laser sintering [J]. J. Mech. Behav. Biomed., 2017, 71: 1
[18] Lütjering G., Williams J., Titanium,ed 2nd. [M], Springer, Berlin, New York, 2003
[19] Gao X X , Zeng W D, Zhang S F ,et al. A study of epitaxial growth behaviors of equiaxed alpha phase at different cooling rates in near alpha titanium alloy [J]. Acta Mater., 2017, 122: 298
[20] Wang Y L, Song X Y, Ma W ,et al. Microstructure and tensile properties of Ti-62421S alloy plate with different annealing treatments [J]. Rare Metals, 2014, 37(7): 568
[21] Semiatin S L, Knisley S L, Fagin P N ,et al. Microstructure evolution during alpha-beta heat treatment of Ti-6Al-4V [J]. Metall. Mater. Trans. A, 2003, 34(10): 2377
[22] Zhang S Z, Wang Q J, Li G P ,et al. Correlation between heat-treatment windows and mechanical properties of high temperature titanium alloy Ti60 [J]. Acta Metall. Sin., 2002, 38: 70
[22] 张尚洲, 王青江, 李阁平等. 高温钛合金Ti-60热处理窗口与性能的关系 [J]. 金属学报, 2002, 38: 70
[23] Zhu S X. Effect of isomorphous β-stabilizing elements on microstructures and oxidation resistance of high temperature titanium alloy [D]. Shenyang: Shenyang University, 2008
[23] 朱绍祥. 同晶β稳定元素对高温钛合金显微组织和抗氧化性能的影响 [D]. 沈阳: 沈阳大学, 2008
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] 刘天福, 张滨, 张均锋, 徐强, 宋竹满, 张广平. 缺口应力集中系数对TC4 ELI合金低周疲劳性能的影响[J]. 材料研究学报, 2023, 37(7): 511-522.