Please wait a minute...
材料研究学报  2019, Vol. 33 Issue (8): 561-571    DOI: 10.11901/1005.3093.2019.095
  研究论文 本期目录 | 过刊浏览 |
深冷处理对低碳高合金马氏体轴承钢力学性能及组织的影响
李东辉1,李志敏2,肖茂果1,李绍宏1(),赵昆渝1,杨卯生3
1. 昆明理工大学材料科学与工程学院 昆明 650093
2. 云南经济管理学院 昆明 650106
3. 钢铁研究总院特钢所 北京 100081
Effect of Deep Cryogenic Treatment on Mechanical Property and Microstructure of a Low Carbon High Alloy Martensitic Bearing Steel during Tempering
Donghui LI1,Zhimin LI2,Maoguo XIAO1,Shaohong LI1(),Kunyu ZHAO1,Maosheng YANG3
1. School of Materials Science and Engineering,Kunming University of Science and Technology,Kunming 650093, China
2. Yunnan College of Business Management, Kunming 650106,China
3. Institute for Special Steels,Central Iron and Steel Research Institute,Beijing 100081, China
引用本文:

李东辉, 李志敏, 肖茂果, 李绍宏, 赵昆渝, 杨卯生. 深冷处理对低碳高合金马氏体轴承钢力学性能及组织的影响[J]. 材料研究学报, 2019, 33(8): 561-571.
Donghui LI, Zhimin LI, Maoguo XIAO, Shaohong LI, Kunyu ZHAO, Maosheng YANG. Effect of Deep Cryogenic Treatment on Mechanical Property and Microstructure of a Low Carbon High Alloy Martensitic Bearing Steel during Tempering[J]. Chinese Journal of Materials Research, 2019, 33(8): 561-571.

全文: PDF(24885 KB)   HTML
摘要: 

利用洛氏硬度计、X射线衍射仪、扫描电子显微镜及透射电子显微镜等研究了低碳高合金马氏体轴承钢深冷处理后的硬度变化及组织演化。结果表明:深冷处理促使部分残留奥氏体转变为马氏体,导致深冷处理后实验钢的硬度较淬火态硬度有所升高。经深冷处理后实验钢在0~100 h回火过程中的硬度均比未深冷处理实验钢的硬度高。深冷处理促使钢中碳原子偏聚并在回火过程中以碳化物的形式析出,与未经深冷处理的实验钢相比,经深冷处理的实验钢回火后马氏体基体中的含碳量更低,表明实验钢经深冷处理后在回火过程中析出更多的碳化物。透射电镜分析表明,实验钢在回火过程中析出的大量弥散分布的纳米级M2C和M6C型碳化物是实验钢长时间回火后保持高硬度的主要原因。

关键词 金属材料高合金钢深冷处理碳化物残留奥氏体    
Abstract

The hardness and microstructure evolution of a low carbon and high alloy martensite bearing steel after deep cryogenic treatment were studied by means of Rockwell hardness tester, X-ray diffractometer, and scanning electron microscope and transmission electron microscope. The results show that the deep cryogenic treatment promotes the transformation of retained austenite to martensite, which leads to an increase in the hardness after quenching. In addition, the hardness of the steel subjected to deep cryogenic treatment was higher than that of the non-cryogenically treated one during tempering. The deep cryogenic treatment causes the carbon atoms in the steel to segregate and precipitate as carbides during the tempering process. Compared with the steel without deep cryogenic treatment, the carbon content in the martensite matrix of the steel subjected to deep cryogenic treatment was lower after tempering, which indicated that more carbides were precipitated in the deep cryogenic treated steel during the tempering process. According to the results of transmission electron microscope images, a large number of nano-sized M2C and M6C carbides precipitated from the martensite matrix during tempering, which may be the main reason for the maintenance of high hardness of the steel after longtime tempering.

Key wordsmetallic materials    high alloy steel    deep cryogenic treatment    carbide    retained austenite
收稿日期: 2019-02-03     
ZTFLH:  TG430.40  
基金资助:国家自然科学基金(No.51761022)
作者简介: 李东辉,男,1995年生,硕士生
CCrMoCoNiVWFe
0.1~0.1513.0~15.04.0~5.012.0~13.01.5~2.50.5~1.00.5~1.0Bal.
表 1  实验钢的化学成分(%,质量分数)
Heat treatment processesHardness (HRC)
Quenching (Q) at 1050℃39.00
Quenching at 1050℃+deep cryogenic treatment (QC) 20 h45.50
Quenching at 1050℃+ tempering 100 h (QT) at 510℃52.00
Quenching at 1050℃+deep cryogenic treatment 20 h+tempering 100 h at 510℃ (QCT)55.50
表2  不同热处理工艺处理后实验钢的硬度值
图1  实验钢淬火态及深冷处理后回火过程中的硬度变化曲线
图2  不同热处工艺处理后实验钢显微组织的SEM像
图3  实验钢中碳化物的EDX能谱
ElementsCMoFeWCrCo
P118.4713.6052.418.523.503.50
表3  碳化物中各元素重量百分比
图4  不同热处理工艺处理后实验钢的显微组织TEM像
图5  不同热处理工艺处理后实验钢的XRD衍射谱
Heat treatment processQQTQCQCT
Austenite content23.9522.6010.259.56
表4  不同热处理工艺下实验钢中的奥氏体含量
图6  不同热处理工艺处理后实验钢的显微组织TEM像及电子衍射花样的标定
图7  不同热处理工艺处理后实验钢的TEM显微组织中残留奥氏体尺寸
图8  经过不同热处理工艺后实验钢M(211)峰的高斯拟合图
Heat treatment processQQCQTQCT
Content of martensite0.09330.09270.08860.0813
表5  不同深冷回火处理后实验钢中马氏体的含碳量
图9  经过不同热处理工艺后实验钢中析出的球状碳化物及电子衍射花样标定
图10  经过不同热处理工艺后实验钢中析出的针状碳化物及衍射花样的标定
[1] Zhao K L, Liu Y B, Yu X F, et al. Effect of solid Solution- and mesothermal phase transition- treatment on microstructure and mechanical property of ball bearing steel 8Cr4Mo4V [J]. Chinese Journal of Materials Research, 2018, 32(3): 200
[1] 赵开礼, 刘永宝, 于兴福等. 固溶温度对8Cr4Mo4V轴承钢的中温相转变和力学性能的影响 [J]. 材料研究学报, 2018, 32(3): 200)
[2] Sun X F, Ge Y L, Jiang M, et al. Laser surface melting of GCr15 bearing steel [J]. Chinese Journal of Materials Research, 1990, 4(6): 493
[2] 孙晓峰, 葛云龙, 姜 明等. GCr15轴承钢激光表面熔凝强化的研究 [J]. 材料研究学报, 1990, 4(6): 493)
[3] Tala-Ighil N, FillonN N, Maspeyrot P. Effect of textured area on the performances of a hydrodynamic journal bearing [J]. Tribology International, 2011, 44(3): 211
[4] Shiozawa K., Hasegawa T., Kashiwagi Y., et al. Very high cycle fatigue properties of bearing steel under axial loading condition[J]. International Journal of Fatigue, 2009, 31(5): 880
[5] Huo Z P, Yang M S, Zhao K U, et al, Microstructure evolution research of Cr-Co-Mo-Ni gear and bearing steel under action of temperature and stress coupling [J]. Iron & Steel, 2014, 49(4): 80
[5] 侯智鹏, 杨卯生, 赵昆渝等. 高温与应力耦合作用下Cr-Co-Mo-Ni齿轮轴承钢微观组织演变 [J]. 钢铁, 2014, 49(4): 80)
[6] Sugimoto S, Honda J, Ohtani Y, et al. Improvements of the magnetic properties of equiaxed Fe-Cr-Co-Mo hard magnets by two-step thermomagnetic treatment [J]. IEEE Transactions on Magnetics, 1987, 23(5): 3193
[7] Ren Y Q, Shang C J, Zhang H W, et al. Effect of retained austenite on toughness and plasticity of 0.23C-1.9Mn-1.6Si steel. [J]. Chinese Journal of Materials Research, 2014, 28(4): 274
[7] 任勇强, 尚成嘉, 张宏伟等. 0.23C-1.9Mn-1.6Si钢中的残留奥氏体对韧塑性的影响 [J]. 材料研究学报, 2014, 28(4): 274)
[8] Sri Siva R, Arockia Jaswin M, Mohan Lal D. Enhancing the wear resistance of 100Cr6 bearing steel using cryogenic treatment [J]. Tribology Transactions, 2012, 55(3): 387
[9] Song W, Appen J V, Choi P, et al. Atomic-scale investigation of ε and θ precipitates in bainite in 100Cr6 bearing steel by atom probe tomography and ab initio calculations [J]. Acta Materialia, 2013, 61(20): 7582
[10] Xie C, Zhou L M, Min N, et al. Effect of deep cryogenic treatment on carbon partition of tempered high carbon high alloy tool steel SDC99 [J]. Chinese Journal of Materials Research, 2016, 30(11): 801
[10] 谢 尘, 周龙梅, 闵 娜等. 深冷处理对高碳高合金工具钢SDC99回火过程碳配分的影响 [J]. 材料研究学报, 2016, 30(11): 801)
[11] Zhang Y, Gao X Z, Zhang B, et al. Effect of deformation temperature on microstructure evolution of S30408 austenitic stainless steel for cold-stretching cryogenic vessels [J]. Chinese Journal of Materials Research, 2014, 28(9): 682
[11] 张 颖, 高晓哲, 张 滨等. 变形温度对应变强化深冷容器用S30408不锈钢组织结构演化的影响 [J]. 材料研究学报, 2014, 28(9): 682 )
[12] Ge Y H. Influence on structure and mechanical properties of GCr15 bearing steel with cryogenic treatment [J]. Materials Review, 2013, 27(s2): 334
[12] 葛艳辉. 深冷处理对GCr15轴承钢组织及力学性能的影响 [J]. 材料导报, 2013, 27(s2): 334)
[13] Li S Y, Liu X Z, He L L. Investigation of the influence of cryogenic treatment on the stability of bearings [J]. Journal of Gansu University of Technology, 2001, 27(2): 17
[13] 李士燕, 刘秀芝, 何力力. 深冷处理对轴承稳定性影响的研究 [J]. 兰州理工大学学报, 2001, 27(2): 17)
[14] Zheng S J, Yang M S, Lei T, et al. Effect of cold treatment on microstructure and mechanical properties of 16Cr14Co12Mo5 bearing steel [J]. Iron & Steel, 2012, 47(12): 76
[14] 郑善举, 杨卯生, 雷霆等. 冷处理对16Cr14Co12Mo5轴承钢组织和性能的影响 [J]. 钢铁, 2012, 47(12): 76)
[15] Ren S, Zhang Y F, Xue F, et al. Enhanced surface mechanical properties of Cr12MoV using ultrasonic surface rolling process and deep cryogenic treatment [J]. Solid State Phenomena, 2018, 279: 143
[16] Zhou J, Jing L, Xu S, et al. Improvement in fatigue properties of 2024-T351 aluminum alloy subjected to cryogenic treatment and laser peening [J]. Surface & Coatings Technology, 2018: S0257897218-303396
[17] Zhao G H, Yu W P, Wei J X. Effect of deep cryogenic treatment on microstructures and mechanical property of GCr15 steel [J]. Development and Application of Materials, 2010, 25(1): 000026
[17] 赵国华, 于文平, 魏建勋. 深冷处理对GCr15组织和力学性能的影响 [J]. 材料开发与应用, 2010, 25(1): 000026-29
[18] Yan X G, Li D Y. Effects of the sub-zero treatment condition on microstructure, mechanical behavior and wear resistance of W9Mo3Cr4V high speed steel [J]. Wear, 2013, 302(1-2): 854
[19] De Moor E, Lacroix S, Clarke A J, et al. Effect of retained austenite stabilized via, quench and partitioning on the strain hardening of martensitic steels [J]. Metallurgical & Materials Transactions A, 2008, 39(11): 2586
[20] Ryu H B, Speer J G, Wise J P. Effect of thermomechanical processing on the retained austenite content in a Si-Mn transformation-induced-plasticity steel [J]. Metallurgical & Materials Transactions A, 2002, 33(9): 2811
[21] Bhadeshia H K D H, Edmonds D V. Tempered martensite embrittlement: Role of retained austenite and cementite [J]. Metal Science, 1979, 13(6): 325
[22] Leem D S, Lee Y D, Jun J H, et al. Amount of retained austenite at room temperature after reverse transformation of martensite to austenite in an Fe-13%Cr-7%Ni-3%Si martensitic stainless steel [J]. Scripta Materialia, 2001, 45(7): 767
[23] Emadoddin E, Akbarzadeh A, Petrov R, et al. Anisotropy of retained austenite stability during transformation to martensite in a TRIP-assisted steel [J]. Steel Research International, 2013, 84(3): 297
[24] Jumov G V K. Martensite crystal lattice, mechanism of austenite-martensite transformation and behavior of carbon atoms in martensite [J]. Metallurgical and Materials Transactions A, 1976, 7(7): 999
[25] Li C, Wang J L. Effect of pre-quenching on martensite-bainitic microstructure and mechanical properties of GCr15 bearing steel [J]. Journal of Materials Science, 1993, 28(8): 2112
[26] Su Y S, Li S X, Lu S Y, et al. Deformation-induced amorphization and austenitization in white etching area of a martensite bearing steel under rolling contact fatigue [J]. International Journal of Fatigue, 2017, 105
[27] Morito S, Tanaka H, Konishi R, et al. The morphology and crystallography of lath martensite in Fe-C alloys [J]. Acta Materialia, 2003, 54(19): 5323
[28] Li H, Yin T T, Liu Y. Effect of deep cryogenic treatment on performances of bearing steel GCr15 [J]. Bearing, 2015, (8): 41
[28] 李 辉, 尹甜甜, 刘 勇. 深冷处理对GCr15轴承钢性能的影响 [J]. 轴承, 2015, (8): 41)
[29] Molinari A, Pellizzari M, Gialanella S, et al. Effect of deep cryogenic treatment on the mechanical properties of tool steels [J]. Journal of Materials Processing Technology, 2001, 118(1): 350
[30] Das D, Dutta A K, Toppo V, et al. Effect of deep cryogenic treatment on the carbide precipitation and tribological behavior of D2 steel [J]. Advanced Manufacturing Processes, 2007, 22(4): 474
[31] Morikawa H., Komatsu H., Tanino M.. Effect of chromium upon coherency between M2C precipitates and α-iron matrix in 0.1C-10Ni-8Co-lMo-Cr steels [J]. Microscopy, 1973, (1):
[32] Zizzo G.. Efficient clearance of early apoptotic cells by human macrophages requires M2C polarization and MerTK induction [J]. Journal of Immunology, 2012, 189(7): 3508
[33] Lu J, Cao Q, Zheng D, et al. Discrete functions of M2a and M2c macrophage subsets determine their relative efficacy in treating chronic kidney disease [J]. Kidney International, 2013, 84(4): 745
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] 刘天福, 张滨, 张均锋, 徐强, 宋竹满, 张广平. 缺口应力集中系数对TC4 ELI合金低周疲劳性能的影响[J]. 材料研究学报, 2023, 37(7): 511-522.