Please wait a minute...
材料研究学报  2019, Vol. 33 Issue (9): 650-658    DOI: 10.11901/1005.3093.2019.069
  研究论文 本期目录 | 过刊浏览 |
快速凝固AlCoCrFeNi2.1共晶高熵合金的微观组织演变和力学性能
曹雷刚1,朱琳1,张磊磊1,王辉2,崔岩1(),杨越1,刘峰斌1
1. 北方工业大学机械与材料工程学院 北京 100144
2. 北京科技大学 新金属材料国家重点实验室 北京 100083
Microstructure Evolution and Mechanical Properties of Rapid Solidified AlCoCrFeNi2.1 Eutectic High Entropy Alloy
CAO Leigang1,ZHU Lin1,ZHANG Leilei1,WANG Hui2,CUI Yan1(),YANG Yue1,LIU Fengbin1
1. School of Mechanical and Materials Engineering, North China University of Technology, Beijing 100144, China
2. State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083, China
引用本文:

曹雷刚,朱琳,张磊磊,王辉,崔岩,杨越,刘峰斌. 快速凝固AlCoCrFeNi2.1共晶高熵合金的微观组织演变和力学性能[J]. 材料研究学报, 2019, 33(9): 650-658.
Leigang CAO, Lin ZHU, Leilei ZHANG, Hui WANG, Yan CUI, Yue YANG, Fengbin LIU. Microstructure Evolution and Mechanical Properties of Rapid Solidified AlCoCrFeNi2.1 Eutectic High Entropy Alloy[J]. Chinese Journal of Materials Research, 2019, 33(9): 650-658.

全文: PDF(7636 KB)   HTML
摘要: 

使用真空快速凝固设备制备不同直径的AlCoCrFeNi2.1合金铸棒和薄带,研究了冷却速率对多主元共晶高熵合金的微观组织和力学性能的影响。结果表明,全部试样均由FCC和B2两相组成。不同直径的合金铸棒均为常规共晶组织,只在表层某些位置观察到胞状共晶组织。铸棒的直径越小,冷却速率越大,规则共晶组织的片间距(λ)越小,其屈服强度越高。当铸棒直径由8 mm减小至2 mm时表层区域的λ值由530.4 μm减小至357.0 μm,轴心区域的片间距由712 μm减小至474 μm,合金的屈服强度由690 MPa提高到877 MPa。结合合金薄带的微观组织分析结果表明,随着冷却速率的提高AlCoCrFeNi2.1合金依次形成规则和非规则混合共晶组织、胞状共晶组织和树枝状组织。

关键词 金属材料共晶高熵合金快速凝固微观组织    
Abstract

Rods with different diameters and ribbons of the multi-component eutectic high-entropy alloy AlCoCrFeNi2.1 were prepared by vacuum rapid solidification facility. The effect of cooling rate on microstructure and mechanical properties of the alloy was investigated. The results show that all of the alloys consist of FCC and B2 phases. Alloy rods of different diameters present a typical eutectic structure, with the presence of the cellular microstructure at certain sites of axial surface regions. The decrease of the diameter raises the cooling rate of the casting rod, resulting in the decrease of lamellar spacing (λ) of the regular eutectic structure and the increase of yield strength. As the diameter decreases from 8 mm to 2 mm, the values of λ decrease from 530.4 to 357.0 μm in the axial surface regions and from 712.0 μm to 474.0 μm in the axial center regions, resulting in the increase of the yield strength from 690 MPa to 877 MPa. As far as the microstructure morphology of the alloy ribbons is concerned, it can be concluded that the microstructure of the alloy may evolves in the following sequence, namely, regular and irregular eutectic structure, cellular structure and dendrite structure as the cooling rate is increased.

Key wordsmetallic materials    eutectic high entropy alloy    rapid solidification    microstructure
收稿日期: 2019-01-21     
ZTFLH:  TG244  
基金资助:北京市自然科学基金(2194074);国家重点研发计划(2017YFB0703102);北京市教委科技一般项目(KM201910009005);北方工业大学毓青人才支持计划(18XN012-081)
作者简介: 曹雷刚,男,1985年生,博士,讲师
图1  AlCoCrFeNi2.1合金的微观组织
AlloyContent/%, atomic fraction

Average

atomic number

AlCoCrFeNi
Nominal16.3916.3916.3916.3934.43-
B2 phase28.48±1.8212.66±0.469.55±1.2610.70±0.7238.61±1.2023.01
FCC phase11.37±0.2717.90±0.2720.28±0.3918.34±0.3132.11±0.2224.94
表1  AlCoCrFeNi2.1高熵合金的能谱分析和物相
图2  不同直径AlCoCrFeNi2.1共晶高熵合金铸棒的表层区域(左侧)和轴心区域(右侧)的微观组织形貌
DiameterLocationPhaseAlCoCrFeNi
Nominal--16.3916.3916.3916.3934.43
2 mmSurfaceFCC14.28±0.7017.98±0.3817.57±0.3818.13±0.5532.02±0.46
B223.10±0.9514.91±0.3412.58±0.5913.55±0.3735.86±0.64
CenterFCC15.19±0.6717.46±0.2917.50±0.6717.49±0.2932.36±0.37
B222.06±0.8814.50±0.4313.85±0.4613.73±0.4835.41±0.88
5 mmSurfaceFCC14.24±0.6717.60±0.3918.64±0.7118.18±0.3231.34±0.46
B225.07±1.1014.17±0.5111.68±0.8312.76±0.5436.35±0.80
CenterFCC15.02±0.6017.59±0.2718.00±0.6517.95±0.2931.45±0.25
B225.07±0.8313.95±0.4211.76±0.4412.54±0.5136.69±0.74
8 mmSurfaceFCC12.19±0.5318.30±0.3218.97±0.4418.86±0.3331.65±0.55
B227.65±1.3013.78±0.4810.54±0.8812.19±0.5336.91±0.79
CenterFCC12.42±0.4317.42±0.3120.13±0.3617.90±0.3132.14±0.62
B228.40±0.4812.75±0.239.84±0.5310.96±0.2938.05±0.52
表2  不同直径合金铸棒表层区域和中心区域FCC和B2相的能谱分析
图3  不同直径AlCoCrFeNi2.1高熵合金铸棒的压缩应力应变曲线
图4  不同直径AlCoCrFeNi2.1高熵合金铸棒表层和轴心区域的规则共晶组织片间距
图5  AlCoCrFeNi2.1合金薄带微观组织演变规律
图6  AlCoCrFeNi2.1薄带接触表面和自由表面的XRD物相分析
图7  AlCoCrFeNi2.1共晶高熵合金非平衡凝固微观组织的演变示意图
1 GreerA L. Confusion by design [J]. Nature, 1993, 366: 303
2 InoueA. Stabilization of metallic supercooled liquid and bulk amorphous alloys [J]. Acta Mater., 2000, 48: 279
3 InoueA, TakeuchiA. Recent progress in bulk glassy, nanoquasicrystalline and nanocrystalline alloys [J]. Mater. Sci. Eng., 2004, 375-377A: 16
4 CantorB, ChangI T H, KnightP, et al. Microstructural development in equiatomic multicomponent alloys [J]. Mater. Sci. Eng., 2004, 375-377A: 213
5 ZhangY. Amorphous and High Entropy Alloys [M]. Beijing: Science Press, 2010
5 张 勇. 非晶和高熵合金 [M]. 北京: 科学出版社, 2010
6 WangJ, HuangW G. Microstructure and mechanical properties of CrMoVNbFex high-entropy alloys [J]. Chin. J. Meter. Res., 2016, 30: 609
6 王 江, 黄维刚. CrMoVNbFex高熵合金微观组织结构与力学性能 [J]. 材料研究学报, 2016, 30: 609
7 NongZ S, LiH Y, WangJ J. Thermal stability of AlCrFeNiTi high entropy alloy [J]. Rare Met. Mater. Eng., 2018, 47: 191
7 农智升, 李宏宇, 王继杰. AlCrFeNiTi高熵合金热稳定性的研究 [J]. 稀有金属材料与工程, 2018, 47: 191
8 ShahmirH, MousaviT, HeJ Y, et al. Microstructure and properties of a CoCrFeNiMn high-entropy alloy processed by equal-channel angular pressing [J]. Mater. Sci. Eng., 2017, 705A: 411
9 DongY, ZhouK Y, LuY P, et al. Effect of vanadium addition on the microstructure and properties of AlCoCrFeNi high entropy alloy [J]. Mater. Des., 2014, 57: 67
10 WuX C, ZhangW Q, QinL, et al. Effects of Annealing treatment on microstructure and mechanical properties of AlCoCrFeNi high-entropy alloy [J]. Hot Work. Technol., 2015, 44(8): 220
10 吴兴财, 张伟强, 秦 力等. 退火处理对AlCoCrFeNi高熵合金组织结构及性能的影响 [J]. 热加工工艺, 2015, 44(8): 220)
11 TakeuchiA, AmiyaK, WadaT, et al. High-entropy alloys with a hexagonal close-packed structure designed by equi-atomic alloy strategy and binary phase diagrams [J]. JOM, 2014, 66: 1984
12 BaoM L, QiaoJ W. Research progress of hexagonal close-packed high-entropy alloys [J]. Mater. China, 2018, 37: 264
12 鲍美林, 乔珺威. 密排六方结构高熵合金研究进展[J]. 中国材料进展, 2018, 37: 264
13 HeJ Y, LiuW H, WangH, et al. Effects of Al addition on structural evolution and tensile properties of the FeCoNiCrMn high-entropy alloy system [J]. Acta Mater., 2014, 62: 105
14 WangW R, WangW L, WangS C, et al. Effects of Al addition on the microstructure and mechanical property of AlxCoCrFeNi high-entropy alloys [J]. Intermetallics, 2012, 26: 44
15 TongC J, ChenM R, YehJ W, et al. Mechanical performance of the AlxCoCrCuFeNi high-entropy alloy system with multiprincipal elements [J]. Metall. Mater. Trans., 2005, 36A: 1263
16 MilenkovicS, CaramR. Effect of the growth parameters on the Ni-Ni3Si eutectic microstructure [J]. J. Cryst. Growth, 2002, 237-239: 95
17 LuY P, DongY, GuoS, et al. A promising new class of high-temperature alloys: eutectic high-entropy alloys [J]. Sci. Rep., 2014, 4: 6200
18 GludovatzB, HohenwarterA, CatoorD, et al. A fracture-resistant high-entropy alloy for cryogenic applications [J]. Science, 2014, 345: 1153
19 LuY P, GaoX Z, JiangL, et al. Directly cast bulk eutectic and near-eutectic high entropy alloys with balanced strength and ductility in a wide temperature range [J]. Acta Mater., 2017, 124: 143
20 JiangL, LuY P, WuW, et al. Microstructure and mechanical properties of a CoFeNi2V0.5Nb0.75 eutectic high entropy alloy in as-cast and heat-treated conditions [J]. J. Mater. Sci. Technol., 2016, 32: 245
21 DongY, JiangL, JiangH, et al. Effects of annealing treatment on microstructure and hardness of bulk AlCrFeNiMo0.2 eutectic high-entropy alloy [J]. Mater. Des., 2015, 82: 91
22 ZhouK Y, TangZ Y, LuY P, et al. Composition, microstructure, phase constitution and fundamental physicochemical properties of low-melting-point multi-component eutectic alloys [J]. J. Mater. Sci. Technol., 2017, 33: 131
23 WangW R, WangW L, YehJ W. Phases, microstructure and mechanical properties of AlxCoCrFeNi high-entropy alloys at elevated temperatures [J]. J. Alloys Compd., 2014, 589: 143
24 LiJ S, JiaW J, WangJ, et al. Enhanced mechanical properties of a CoCrFeNi high entropy alloy by supercooling method [J]. Mater. Des., 2016, 95: 183
25 WangF J, ZhangY, ChenG L, et al. Cooling rate and size effect on the microstructure and mechanical properties of AlCoCrFeNi high entropy alloy [J]. J. Eng. Mater. Technol., 2009, 131: 034501
26 Kozie?T. Estimation of cooling rates in suction casting and copper-mould casting processes [J]. Arch. Metall. Mater., 2015, 60: 767
27 WuZ W. Effect of cooling rate on the microstructure and mechanical properties of Mg-Cu-(Y) alloy [D]. Changsha: Central South University, 2007
27 吴志文. 冷却速度对Mg-Cu-(Y)合金组织及力学性能的影响 [D]. 长沙: 中南大学, 2007
28 KarpeB, KosecB, BizjakM. Analyses of the melt cooling rate in the melt-spinning process [J]. J. Achiev. Mater. Manuf. Eng., 2012, 51: 59
29 YehJ W. Recent progress in high-entropy alloys [J]. Eur. Control J., 2006, 31: 633
30 TsaiK Y, TsaiM H, YehJ W. Sluggish diffusion in Co-Cr-Fe-Mn-Ni high-entropy alloys [J]. Acta Mater., 2013, 61: 4887
31 LiQ, ChenW M, ZhongJ, et al. On sluggish diffusion in fcc Al–Co-Cr-Fe-Ni high-entropy alloys: an experimental and numerical study [J]. Metals, 2018, 8: 16
32 TanY M, LiJ S, WangJ, et al. Seaweed eutectic-dendritic solidification pattern in a CoCrFeNiMnPd eutectic high-entropy alloy [J]. Intermetallics, 2017, 85: 74
33 WangR, ChenW M, ZhongJ, et al. Experimental and numerical studies on the sluggish diffusion in face centered cubic Co-Cr-Cu-Fe-Ni high-entropy alloys [J]. J. Mater. Sci. Technol., 2018, 34: 1791
34 DivinskiS V, PokoevA V, EsakkirajaN, et al. A mystery of "sluggish diffusion" in high-entropy alloys: the truth or a myth? [J]. Diffus. Found., 2018, 17: 69
35 OsetskyY N, BélandL K, BarashevA V, et al. On the existence and origin of sluggish diffusion in chemically disordered concentrated alloys [J]. Curr. Opin. Solid State Mater. Sci., 2018, 22: 65
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] 刘天福, 张滨, 张均锋, 徐强, 宋竹满, 张广平. 缺口应力集中系数对TC4 ELI合金低周疲劳性能的影响[J]. 材料研究学报, 2023, 37(7): 511-522.