Please wait a minute...
材料研究学报  2019, Vol. 33 Issue (7): 488-496    DOI: 10.11901/1005.3093.2018.715
  研究论文 本期目录 | 过刊浏览 |
微量Zr对Al-Zn-Mg-Mn合金板材抗剥落腐蚀性能的影响
柴文茹1,2,陈景超1,2,刘胜胆1,2,3(),叶凌英1,2,3,林化强4,张新明1,2,3
1. 中南大学材料科学与工程学院 长沙 410083
2. 中南大学 有色金属材料科学与工程教育部重点实验室 长沙 410083
3. 中南大学 有色金属先进结构材料与制造协同创新中心 长沙 410083
4. 中车青岛四方机车车辆股份有限公司 国家高速动车组总成工程技术研究中心 青岛 266000
Effect of Minor Zr Addition on Exfoliation Corrosion Resistance of Al-Zn-Mg-Mn Alloy Sheet
Wenru CHAI1,2,Jingchao CHEN1,2,Shengdan LIU1,2,3(),Lingying YE1,2,3,Huaqiang LIN4,Xinming ZHANG1,2,3
1. School of Materials Science and Engineering, Central South University, Changsha 410083, China
2. Key Laboratory of Nonferrous Metal Materials Science and Engineering, Ministry of Education, Central South University, Changsha 410083, China
3. Nonferrous Metal Oriented Advanced Structural Materials and Manufacturing Cooperative Innovation Center, Central South University, Changsha 410083, China
4. National Engineering Research Center for High-speed EMU, CRRC Qingdao Sifang Co. Ltd. , Qingdao 266000, China
引用本文:

柴文茹,陈景超,刘胜胆,叶凌英,林化强,张新明. 微量Zr对Al-Zn-Mg-Mn合金板材抗剥落腐蚀性能的影响[J]. 材料研究学报, 2019, 33(7): 488-496.
Wenru CHAI, Jingchao CHEN, Shengdan LIU, Lingying YE, Huaqiang LIN, Xinming ZHANG. Effect of Minor Zr Addition on Exfoliation Corrosion Resistance of Al-Zn-Mg-Mn Alloy Sheet[J]. Chinese Journal of Materials Research, 2019, 33(7): 488-496.

全文: PDF(14289 KB)   HTML
摘要: 

通过腐蚀浸泡实验和电化学阻抗谱测试,研究了微量Zr的添加对Al-Zn-Mg-Mn合金板材抗剥落腐蚀性能的影响,并结合金相显微镜(OM)、电子背散射衍射技术(EBSD)、扫描透射电镜(STEM)等显微组织表征结果对影响机理进行分析和讨论。结果表明:在Al-Zn-Mg-Mn板材中添加微量Zr可以改善抗剥落腐蚀性能,剥落腐蚀等级由EB级变为EA级,最大腐蚀深度由593 μm降至421 μm。通过分析板材晶粒组织的差异和晶界η相尺寸、间距和化学成分的变化及无沉淀析出带宽度的变化,认为添加微量Zr后是通过综合作用来影响材料的剥落腐蚀行为。

关键词 金属材料Al-Zn-Mg合金剥落腐蚀Zr元素显微组织晶界析出相    
Abstract

The effect of minor Zr addition on exfoliation corrosion resistance of Al-Zn-Mg-Mn alloy sheet was studied by means of standard exfoliation corrosion immersion tests and electrochemical impedance spectroscope (EIS) technique combined with optical microscopy (OM), electron back scattering diffraction (EBSD) technique and scanning transmission electron microscopy (STEM). The results showed that due to the addition of Zr the exfoliation corrosion resistance of Al-Zn-Mg-Mn alloy sheet is significantly improved, correspondingly, the maximum corrosion depth decreases from 593 μm to 421 μm and the exfoliation corrosion rating changes from EB to EA. The relevant mechanism was discussed based on the difference of grain structure and the changes of the size, spacing and microchemistry of η precipitates at grain boundaries and the width of precipitate free zone.

Key wordsmetallic materials    Al-Zn-Mg alloy    exfoliation corrosion    Zr    microstructure    grain boundary precipitate
收稿日期: 2018-12-18     
ZTFLH:  TG146  
基金资助:国家重点研发计划项目(2016YFB0300901);湖南省科技重大专项(2016GK1004);中南大学升华育英计划(20130603)
作者简介: 柴文茹,女,1994年生,硕士
AlloysZnMgCuMnZrFeSiAl
Al-Zn-Mg-Mn4.291.230.150.290.000.160.09Bal.
Al-Zn-Mg-Mn-Zr4.311.190.150.280.120.150.08Bal.
表1  实验板材的化学成分
图1  两种板材RD-ND截面的晶粒取向分布图
Alloys

Size along RD of recrystallized grains

/μm

Size along ND of recrystallized grains

/μm

Recrystallized fraction

/%

SGBs fraction /%

GBs fraction

/%

Al-Zn-Mg-Mn21.6±11.810.7±2.81005.8±1.094.2±1.4
Al-Zn-Mg-Mn-Zr17.6±4.19.3±1.969.4±9.337.9±9.462.1±18.5
表2  两种板材的晶粒组织参数统计结果
图2  Al-4.3%Zn-1.2%Mg-0.28%Mn-x%Zr合金的变温截面相图
图3  Al-Zn-Mg-Mn-Zr板材固溶处理后的HAADF-STEM照片
图4  两种板材大角度晶界的HAADF-STEM照片
图5  两种板材晶界η相尺寸、间距、PFZ宽度分布图
AlloysWidth of PFZs /nmSize of GBPs /nmSpacing of GBPs/nmArea fraction of GBPs /%Elements of GBPs/%, atomic fraction
ZnMgCu
Al-Zn-Mg-Mn56.1±6.253.6±9.031.5±23.18.4±2.113.1±8.66.5±3.60.6±0.1
Al-Zn-Mg-Mn-Zr52.9±11.384.2±26.272.2±63.48.9±2.713.8±3.36.9±1.10.7±0.1
表3  两种板材的晶界特性统计结果
图6  Al-Zn-Mg-Mn-Zr板材的HAADF-STEM照片
图7  两种板材在EXCO溶液中浸泡2 h和48 h后表面数码照片
图8  两种板材在EXCO溶液浸泡48 h后RD-ND面的金相照片
AlloysCorrosion rating

Maximum corrosion depth

/μm

RsCPERtRpL
/Ω·cm2/F·cm-2/Ω·cm2/Ω·cm2/H·cm2
Al-Zn-Mg-MnEB5931.738.85×10-6227.8425.4411.3
Al-Zn-Mg-Mn-ZrEA42113.961.14×10-5383.91418260
表4  两种板材的剥落腐蚀等级、最大深度及电化学参数
图9  两种板材在EXCO溶液中的Nyquist曲线,Bode图和等效电路图
[1] Jin L B, Zhao G, Feng Z H, et al. Weld-able moderate strength Al-Zn-Mg alloy used for high speed train [J]. Light Alloy Fabrication Technology, 2010, 38(12): 47
[1] (金龙兵, 赵 刚, 冯正海等. 高速列车用中强可焊Al-Zn-Mg合金材料 [J]. 轻合金加工技术, 2010, 38(12): 47)
[2] Song R G, Dietzel W, Zhang B J, et al. Stress corrosion cracking and hydrogen embrittlement of an Al-Zn-Mg-Cu alloy [J]. Acta Mater., 2004, 52(16): 4727
[3] Liu S D, Guo C, Ye L Y, et al. Influence of quench rate on exfoliation corrosion resistance of rolled 7020 Al-alloy plate [J]. Chinese Journal of Materials Research, 2018, 32(6): 423
[3] (刘胜胆, 郭 琛, 叶凌英等. 淬火速率对7020铝合金板材耐剥落腐蚀性能的影响 [J]. 材料研究学报, 2018, 32(6): 423)
[4] Liao W B, Liu X Y, Liu S D, et al. Effect of exfoliation corrosion on mechanical properties of 7055 aluminum alloy sheet [J]. J. Cent. South Univ. (Sci. Technol.), 2012, 43(6): 2137
[4] (廖文博, 刘心宇, 刘胜胆等. 剥落腐蚀对7055铝合金板材力学性能的影响 [J]. 中南大学学报(自然科学版), 2012, 43(6): 2137)
[5] Xu J, Chen K H, Chen S Y, et al. Effects of minor Ti and Cr additions on microstructure and properties of Al-Zn-Mg-Cu-Zr aluminum alloy [J]. Materials Science and Engineering of Powder Metallurgy, 2016, 21(1): 50
[5] (许 杰, 陈康华, 陈送义等. 微量Ti、Cr对Al-Zn-Mg-Cu-Zr合金组织与性能的影响 [J]. 粉末冶金材料科学与工程, 2016, 21(1): 50)
[6] Fang H C, Chao H, Chen K H, et al. Microstructures, fracture and localized corrosion behaviors of Al-Zn-Mg-Cu alloy with Zr, Yb and Cr additions [J]. Chinese Journal of Rare Metals, 2015, 39(8): 686
[6] (方华婵, 巢 宏, 陈康华等. Zr, Yb, Cr对Al-Zn-Mg-Cu合金组织、断裂和局部腐蚀行为的影响 [J]. 稀有金属, 2015, 39(8): 686)
[7] Deng Y, Yin Z M, Zhao K, et al. Effects of Sc and Zr microalloying additions and aging time at 120℃ on the corrosion behaviour of an Al-Zn-Mg alloy [J]. Corros. Sci., 2012, 65: 288
[8] Cai Y H, Hao B, Cui H, et al. Effects and mechanism of manganese on 7000 series Al alloy [J]. Materials Science & Technology, 2008, 16(4): 531
[8] (蔡元华, 郝 斌, 崔 华等. 锰在7000系铝合金中的作用及机理 [J]. 材料科学与工艺, 2008, 16(4): 531)
[9] Pyun S I, Orr S J, Nam S W. Corrosion fatigue crack initiation of Al-Zn-Mg-Mn alloy in 0.5 M Na2SO4 solution [J]. Mater. Sci. Eng. A, 1998, 241(1-2): 281
[10] Jiao H B, Chen S D, Chen S Y, et al. Effect of Mn and Zr on the anisotropy of Al-Zn-Mg-Cu aluminum alloy [J]. Materials Review, 2018, 32(3): 937
[10] (焦慧彬, 陈善达, 陈送义等. Mn和Zr对Al-Zn-Mg-Cu铝合金各向异性的影响 [J]. 材料导报, 2018, 32(3): 937)
[11] Li B, Pan Q L, Huang X, et al. Microstructures and properties of Al-Zn-Mg-Mn alloy with trace amounts of Sc and Zr [J]. Mater. Sci. Eng. A, 2014, 616: 219
[12] Wang Y Y. Corrosion behavior of aluminum alloy in flowing seawater [J]. Equipment Environmental Engineering, 2005, 2(6): 72
[12] (王曰义. 铝合金在流动海水中的腐蚀行为 [J]. 装备环境工程, 2005, 2(6): 72)
[13] Xu Y, Li X B, Yu W X, et al. Effects of rare earth on mechanical properties and stress corrosion behavior of Al-Zn-Mg alloy [J]. Journal of Jilin University (Science Edition), 2003, 41(4): 506
[13] (徐 跃, 李雪冰, 于文学等. 稀土对Al-Zn-Mg合金力学性能和应力腐蚀的影响 [J]. 吉林大学学报(理学版), 2003, 41(4): 506)
[14] Zhang X M, Liu S D, Liu Y, et al. Influence of quench rate and zirconium content on intergranular corrosion of 7055 type aluminum alloy [J]. J. Cent. South Univ. (Sci. Technol.), 2007, 38(2): 181
[14] (张新明, 刘胜胆, 刘 瑛等. 淬火速率和锆含量对7055型铝合金晶间腐蚀的影响 [J]. 中南大学学报(自然科学版), 2007, 38(2): 181)
[15] Li J J, Zhang C L, Godfrey A, et al. EBSD investigation for influences of austenitization time and cooling rate on microstructure in a ultrahigh carbon steel [J]. J. Chin. Electr. Microsc. Soc., 2013, 32(6): 453
[15] (李俊杰, 张成路, Godfrey A等. 奥氏体化时间与冷却速率对超高碳钢组织影响的EBSD研究 [J]. 电子显微学报, 2013, 32(6): 453)
[16] Xie Y H, Yang S J, Dai S L, et al. Application of element Zr in aluminum alloys [J]. Journal of Aeronautical Materials, 2002, 22(4): 56
[16] (谢优华, 杨守杰, 戴圣龙等. 锆元素在铝合金中的应用 [J]. 航空材料学报, 2002, 22(4): 56)
[17] Liu S D, Chen B, Li C B, et al. Mechanism of low exfoliation corrosion resistance due to slow quenching in high strength aluminium alloy [J]. Corros. Sci., 2015, 91: 203
[18] Sun X Y, Zhang B, Lin H Q, et al. Correlations between stress corrosion cracking susceptibility and grain boundary microstructures for an Al-Zn-Mg alloy [J]. Corros. Sci., 2013, 77: 103
[19] Li S, Dong H, Li P, et al. Effect of repetitious non-isothermal heat treatment on corrosion behavior of Al-Zn-Mg alloy [J]. Corros. Sci., 2018, 131: 278
[20] Song F X, Zhang X M, Liu S D, et al. The effect of quench rate and overageing temper on the corrosion behaviour of AA7050 [J]. Corros. Sci., 2014, 78: 276
[21] Huang L P, Chen K H, Li S. Influence of grain-boundary pre-precipitation and corrosion characteristics of inter-granular phases on corrosion behaviors of an Al-Zn-Mg-Cu alloy [J]. Mater. Sci. Eng. B, 2012, 177(11): 862
[22] Li C B, Zhang X M, Liu S D, et al. Quench sensitivity relative to exfoliation corrosion of 7085 aluminum alloy [J]. Chinese Journal of Materials Research, 2013, 27(5): 454
[22] (李承波, 张新明, 刘胜胆等. 7085铝合金剥落腐蚀的淬火敏感性 [J]. 材料研究学报, 2013, 27(5): 454)
[23] Knight S P, Birbilis N, Muddle B C, et al. Correlations between intergranular stress corrosion cracking, grain-boundary microchemistry, and grain-boundary electrochemistry for Al-Zn-Mg-Cu alloys [J]. Corros. Sci., 2010, 52: 4073
[24] Yang Y, Chen Z J, Zhou R, et al. Study on exfoliation corrosion resistance of Al-Zn-Mg-Cu aluminum alloy [J]. Metallic Functional Materials, 2013, 20(3): 6
[24] (杨 弋, 陈忠家, 周 如等. Al-Zn-Mg-Cu系铝合金抗剥落腐蚀性能研究 [J]. 金属功能材料, 2013, 20(3): 6)
[25] Li C B, Liu S D, Wang G W, et al. Effect of cooling rate on exfoliation corrosion of Al-Zn-Mg-Cu alloy thick plate [J]. Chinese Journal of Materials Research, 2013, 27(3): 259
[25] (李承波, 刘胜胆, 王国玮等. 冷却速率对Al-Zn-Mg-Cu合金厚板剥落腐蚀的影响 [J]. 材料研究学报, 2013, 27(3): 259)
[26] Shi Y J, Pan Q L, Li M J, et al. Effect of Sc and Zr additions on corrosion behaviour of Al-Zn-Mg-Cu alloys [J]. J. Alloys Compd., 2014, 612: 42
[1] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[3] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[4] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[5] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[6] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[7] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[8] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[9] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[10] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[11] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[12] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[13] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[14] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[15] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.