Please wait a minute...
材料研究学报  2019, Vol. 33 Issue (7): 481-487    DOI: 10.11901/1005.3093.2018.690
  研究论文 本期目录 | 过刊浏览 |
喷雾干燥法制备富锂正极材料及其电化学性能
周鹏飞,张鹏(),杜云慧,王玉洁,左成
北京交通大学机械与电子控制学院 北京 100044
Preparation and Electrochemical Properties of Li-rich Cathode Material Prepared by Spray Drying Method
Pengfei ZHOU,Peng ZHANG(),Yunhui DU,Yujie WANG,Cheng ZUO
School of Mechanical, Electronic and Control Engineering, Beijing Jiaotong University, Beijing 100044, China
引用本文:

周鹏飞,张鹏,杜云慧,王玉洁,左成. 喷雾干燥法制备富锂正极材料及其电化学性能[J]. 材料研究学报, 2019, 33(7): 481-487.
Pengfei ZHOU, Peng ZHANG, Yunhui DU, Yujie WANG, Cheng ZUO. Preparation and Electrochemical Properties of Li-rich Cathode Material Prepared by Spray Drying Method[J]. Chinese Journal of Materials Research, 2019, 33(7): 481-487.

全文: PDF(6378 KB)   HTML
摘要: 

用喷雾干燥法制备Li1.2Mn0.54Ni0.13Co0.13O2富锂正极材料并表征其结构、形貌以及电化学性能,研究了烧结温度对材料电化学性能的影响。结果表明:这种正极材料具有良好的层状结构,一次颗粒粒径为100 nm左右且分布均匀,样品的首次放电比容量为220.2 mAh/g,库伦效率为72.5%,18个循环后容量保持率为96.8%。电化学阻抗和循环伏安特性的测试结果表明,这种正极材料具有良好的电化学性能。

关键词 材料学喷雾干燥法Li1.2Mn0.54Ni0.13Co0.13O2正极材料电化学性能    
Abstract

Li-rich cathode material of Li1.2Mn0.54Ni0.13Co0.13O2 was prepared by spray drying method. The structure, morphology and electrochemical properties of the materials were characterized and the effect of sintering temperature on electrochemical properties of the material were investigated. Results show that the cathode material has a good layered structure, the primary particles exhibited rather uniform size distribution with average size of 100 nm. The initial discharge specific capacity of the prepared material can reach 220.2 mAh/g. The coulomb efficiency of the material prepared by sintering at 800oC can reach 72.5%, and the capacity retention rate can reach 96.8% after 18 cycles. Meanwhile, it also showed good electrochemical performance in electrochemical impedance and cyclic voltammetry.

Key wordsmaterials science    spray drying method    Li1.2Mn0.54Ni0.13Co0.13O2    cathode material    electrochemical performance
收稿日期: 2018-12-05     
ZTFLH:  TM911  
基金资助:北京市自然科学基金(2162036)
作者简介: 周鹏飞,男,1992年生,硕士
图1  富锂正极材料前驱体的TG-DTA曲线
图2  在不同温度烧结的Li1.2Mn0.54Ni0.13Co0.13O2的XRD谱图
Temperaturea/nmc/nmc/aI(003)/I(104)
800℃0.285011.423254.99371.21
850℃0.284901.422754.99391.22
900℃0.285071.423344.99291.22
表1  在不同温度烧结的Li1.2Mn0.54Ni0.13Co0.13O2的晶胞参数
图3  在800℃烧结的样品的SEM图像
图4  800℃烧结样品的TEM图像
图5  在不同温度烧结的富锂正极材料的首次充放电曲线
Temperature/℃1st charging specific capacity/mAh·g-11st discharging specific capacity/mAh·g-1Irreversible capacity loss/mAh·g-1Coulomb efficiency/%
800 oC293.6212.880.872.5%
850 oC316.9203113.964.1%
900 oC322220.2101.868.4%
表2  在不同温度烧结的富锂正极材料的首次充放电性能
图6  在不同温度烧结的富锂正极材料不同循环的充放电曲线
图7  在不同温度烧结的富锂正极材料的放电中值电压比较
图8  在不同温度烧结的富锂正极材料的循环性能曲线
Temperature/℃1st discharging specific capacity/mAh·g-1Discharging specific capacity after 18 cycles/mAh·g-1Capacity retention rate after 18 cycles/%
800℃212.820696.8%
850℃203190.693.9%
900℃220.2192.887.6%
表3  在不同烧结温度制备的富锂正极材料的循环性能参数
图9  在800℃烧结的富锂正极材料的循环伏安曲线
图10  在不同温度烧结的富锂正极材料的EIS阻抗谱和等效电路
Temperature/℃Rs/Ω·cm2RSEI/Ω·cm2
800℃17.4979.17
850℃14.4995.37
900℃22.97108.50
表4  在不同温度烧结的富锂正极材料的等效电路阻抗
[1] Wang J, He X, Paillard,et al. Lithium-and manganese-rich oxide cathode materials for high-energy lithium ion batteries [J]. Advanced Energy Materials, 2016, 6(21): 1600906
[2] Koga H, Croguennec L, Menetrier M, et al. Reversible oxygen participation to the redox processes revealed for Li1.2Mn0.54Co0.13-Ni0.13O2 [J]. Electrochemical Society, 2013, 160(48): A786
[3] Arun N, Denis Y, et al. Enhanced cycling stability of o-LiMnO2 cathode modified by lithium boron oxide coating for lithium-ion batteries [J]. Solid State Electrochemistry, 2014, 18: 1915
[4] Qiu X Y, Zhang Q C, Zhang Q Q, et al. Electrochemical and electronic properties of LiCoO2 cathode investigated by galvanostatic cycling and EIS [J]. Physical Chemistry Chemical Physics Pccp, 2012, 14(8): 2617
[5] Xiang X, Fu Z, Li W, et al. Morphology-controllable synthesis of LiMn2O4 particles as cathode materials of lithium batteries [J]. Solid State Electrochemistry, 2013, 17(4): 1201
[6] Gao T H, Liu H Y, Zhang P, et al. Structural and electronic properties of Al-doped spinel LiMn2O4 [J]. Acta Physica Sinica, 2012, 61(18): 187306
[7] Jiang X, Wang Z, Rooney D, et al. A design strategy of large grain lithium-rich layered oxides for lithium-ion batteries cathode [J]. Electrochemical Acta, 2015, 160: 131
[8] Shi S, Tu J, Tang Y, et al. Enhanced cycling stability of Li[Li0.2Mn0.54-Ni0.13Co0.13]O2 by surface modification of MgO with melting impregnation method [J]. Electrochimica Acta, 2013, 88(16): 671
[9] Kong J, Wang C, et al. Enhanced electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 by surface modification with graphene-like lithium-active MoS2 [J]. Electrochimica Acta, 2015, 174: 542
[10] Ito A, Shoda K, Sato Y, et al. In situ X-ray absorption spectroscopic study of Li-rich layered cathode material Li[Ni0.17Li0.2Co0.07-Mn0.56]O2 [J]. Power Sources, 2011, 196(10): 4785
[11] Gao J, Huang Z, Li J, et al. Preparation and characterization of Li1.2Ni0.13Co0.13Mn0.54O2 cathode materials for lithium-ion battery [J]. Ionics, 2014, 20(3): 301
[12] Hou M, Guo S, Liu J, et al. Preparation of lithium-rich layered oxide micro-spheres using a slurry spray-drying process [J]. Power Sources, 2015, 287: 370
[13] Oh P, Myeong S, Cho W, et al. Superior long-term energy retention and volumetric energy density for Li-rich cathode materials [J]. Nano Letters, 2014, 14(10): 5965
[14] Yu H, Wang Y, Asakura D, et al. Electrochemical kinetics of the 0.5Li2-MnO3.0.5LiMn0.42Ni0.42Co0.16O2 ‘composite’ layered cathode material for lithium-ion batteries [J]. RSC Advances, 2012, 2(23): 8797
[15] Ito A, Li D, Sato Y, et al. Cyclic deterioration and its improvement for Li-rich layered cathode material Li[Ni0.17Li0.2Co0.07Mn0.56]O2 [J]. Power Sources, 2010, 195: 567
[16] Yabuuchi N, Yoshii K, Myung S, et al. Detailed studies of a high-capacity electrode material for rechargeable batteries, Li2MnO3-LiCo1/3Ni1/3Mn1/3O2 [J]. The American Chemical Society, 2011, 133(12): 4 404-419
[17] Cho Y H, Park S M, Yoshio M, et al. Effect of synthesis condition on the structural and electrochemical properties of Li[Ni1/3Mn1/3Co1/3]O2 prepared by carbonate co-precipitation method [J]. Power Sources, 2005, 142(1-2): 306
[18] Julien C, Ziolkiewicz S , Lemal M, et al. Synthesis, structure and electrochemistry of LiMn2-yAlyO4 prepared by a wet-chemistry method [J]. Master Chem, 2001, 11: 1837
[19] Shaju K.M., Subba Rao G.V., et al, Performance of layered Li(Ni1/3Co1/3Mn1/3)O2 as cathode for Li-ion batteries [J]. Electrochimica Acta,2003, 48: 145
[20] Yu R B, Lin Y B, et al, Investigation on the enhanced electrochemical performances of Li1.2Mn0.54Ni0.13Co0.13O2 by surface modi?cation with ZnO [J]. Electrochimica Acta,2015, 173: 515
[21] He Y S, Felix F, Rick J, et al. Direct in situ observation of Li2O evolution on Li-rich high-capacity cathode material Li[NixLi(1-2x)/3-Mn(2-x)/3]O2(0≤x≤0.5) [J]. The American Chemical Society, 2014, 136(3): 999
[22] Armstrong A R, Holzapfel M, Novak P, et al. Demonstrating oxygen loss and associated structural reorganization in the lithium battery cathode Li[Ni0.2Li0.2Mn0.6]02 [J]. American Chemical Society, 2006, 128(26): 8694
[23] Gu M, Belharouak I, Zheng J M, et al. Formation of the spinel phase in the layered composite cathode used in Li-ion batteries [J]. ACS Nano, 2013, 7(1): 760
[24] Bonani S, Nomasonto R, et al. Coating effect of LiFePO4 and Al2O3 on Li1.2Mn0.54Ni0.13Co0.13O2 cathode surface for lithium ion batteries [J]. Power Sources, 2017, 353: 210
[25] Zhou L, Wu Y, et al. Enhanced electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material coated with Li+-conductive Li2SiO3 for lithium ion batteries [J]. Alloys and Compounds, 2017, 724: 991
[26] Hu E Y, Lyu Y C, Xin H L, et al. Explore the effects of microstructural defects on voltage fade of Li-and Mn-rich cathodes [J]. Nano Letters, 2016, 16(10): 5999
[27] Xu B, Fell C R, Chi M, et al. Identifying surface structural changes in layered Li—excess nickel manganese oxides in high voltage lithium ion batteries: A joint experimental and theoretical study [J]. Energy & Environmental Science, 2011, 4(6): 2223
[28] Zheng Y, Chen L, Su Y F, et al. An interfacial framework for breaking through the Li-ion transport barrier of Li-rich layered cathode materials [J]. Materials Chemistry A, 2017, 5(46): 24292
[29] Zheng J, Gu M, Xiao J, et al. Functioning mechanism of AlF3 coating on the Li-and Mn-rich cathode materials [J]. Chemistry of Materials, 2014, 26(22): 6320
[30] Wan D Y, Fan Z Y, Dong Y X, et al. Effect of metal (Mn, Ti) doping on NCA cathode materials for lithium ion batteries [J]. Nanomaterials, 2018, 53(26): 191
[31] Hashambhoy A M, Whitacre J F, et al. Li Diffusivity and phase change in LiFe0.5Mn0.5PO4: A comparative study using galvanostatic intermittent titration and cyclic voltammetry [J]. The Electrochemical Society, 2011, 158(4): A390
[32] Zhang J, Lei Z H, et al. Surface Modi?cation of Li1.2Mn0.54Ni0.13-Co0.13O2 by Hydrazine Vapor as Cathode Material for Lithium-Ion Batteries [J]. Applied materials and interfaces, 2015, 7: 15821
[33] Qiu X Y, Zhuang Q C, Zhang Q Q, et al. Reprint of “Investigation of layered LiNi1/3Co1/3Mn1/3O2 cathode of lithium ion battery by electrochemical impedance spectroscopy” [J]. Electroanalytical Chemistry, 2013, 688: 393
[1] 刘东璇, 陈平, 曹新荣, 周雪, 刘莹. 碗状C@FeS2@NC复合材料的制备及其电化学性能[J]. 材料研究学报, 2023, 37(1): 1-9.
[2] 刘艳云, 刘宇涛, 李万喜. rGO/PANI/MnO2 三元复合材料的制备和电化学性能[J]. 材料研究学报, 2022, 36(7): 552-560.
[3] 殷洁, 胡云涛, 刘慧, 杨逸霏, 王艺峰. 基于电沉积技术构建聚苯胺/海藻酸膜及电化学性能研究[J]. 材料研究学报, 2022, 36(4): 314-320.
[4] 夏傲, 赵晨鹏, 曾啸雄, 韩曰鹏, 谈国强. B掺杂MnO2的制备及其电化学性能[J]. 材料研究学报, 2021, 35(1): 36-44.
[5] 左成, 杜云慧, 张鹏, 王玉洁, 曹海涛. Al2O3包覆Li1.2Mn0.54Ni0.13Co0.13O2富锂正极材料的电化学性能[J]. 材料研究学报, 2020, 34(8): 621-627.
[6] 谢礼兰, 杨冬升, 凌静. 高容量锂电池负极材料TiNb2O7的合成及其机理[J]. 材料研究学报, 2020, 34(5): 385-391.
[7] 巩桂芬,李泽,王磊,崔巍巍. 静电纺TiO2改性联苯型聚酰亚胺锂离子电池隔膜[J]. 材料研究学报, 2020, 34(3): 169-175.
[8] 周抒予,靳晓哲,刘佳,田瑞雪,吴爱民,黄昊. 作为钠硫电池正极的碳约束NiS2纳米结构中钠离子的储运特性[J]. 材料研究学报, 2020, 34(3): 191-197.
[9] 薛江陪,姜春海,邹智敏,潘炳炫. LiCoO2/LiNi0.8Co0.15Al0.05O2混合正极的颗粒级配与电化学性能[J]. 材料研究学报, 2019, 33(3): 170-176.
[10] 肖雅丹,靳晓哲,黄昊,吴爱民,高嵩,刘佳. MoP纳米粒子锂离子电池负极材料的制备及其电化学性能[J]. 材料研究学报, 2019, 33(1): 65-71.
[11] 高荣贞, 李晓冬, 刘文凤, 尹艳红, 杨书廷. 分级结构类球形MgFe2O4/C复合材料的制备及其储锂性能[J]. 材料研究学报, 2018, 32(9): 713-720.
[12] 李子庆, 赫文秀, 张永强, 于慧颖, 李兴盛, 刘斌. 不同氮源对掺氮石墨烯的结构和性能的影响[J]. 材料研究学报, 2018, 32(8): 616-624.
[13] 钟盛文, 张华军, 姚文俐, 张骞, 付宇坤, 唐小冬. LiNi0.5Mn0.5-xCoxO2(0≤x≤0.12)正极材料的制备及其电化学性能[J]. 材料研究学报, 2018, 32(7): 487-494.
[14] 赵思勰, 晏华, 李云涛, 汪宏涛, 胡志德. 石蜡/硅藻土定型相变材料的结构和热性能[J]. 材料研究学报, 2017, 31(7): 502-510.
[15] 李爱军, 传秀云, 黄杜斌, 曹曦. KOH活化硅藻土模板炭及其电化学性能研究[J]. 材料研究学报, 2017, 31(5): 321-328.