Please wait a minute...
材料研究学报  2019, Vol. 33 Issue (7): 497-504    DOI: 10.11901/1005.3093.2018.677
  研究论文 本期目录 | 过刊浏览 |
一级应变硬化F316奥氏体不锈钢的高温蠕变性能
王冬颖1,王立毅2,冯鑫3,张滨3,雍兴平1,张广平2()
1. 沈阳鼓风机集团核电泵业有限公司 沈阳 110869
2. 中国科学院金属研究所 沈阳材料科学国家研究中心 沈阳 110016
3. 东北大学 材料各向异性与织构教育部重点实验室 材料科学与工程学院 沈阳 110819
Creep Properties of Pre-deformed F316 Stainless Steel
Dongying WANG1,Liyi WANG2,Xin FENG3,Bin ZHANG3,Xingping YONG1,Guangping ZHANG2()
1. Shenyang Blower Works Group Corporation, Shenyang 110869, China
2. Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
3. Key Laboratory for Anisotropy and Texture of Materials, Ministry of Education, School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
引用本文:

王冬颖,王立毅,冯鑫,张滨,雍兴平,张广平. 一级应变硬化F316奥氏体不锈钢的高温蠕变性能[J]. 材料研究学报, 2019, 33(7): 497-504.
Dongying WANG, Liyi WANG, Xin FENG, Bin ZHANG, Xingping YONG, Guangping ZHANG. Creep Properties of Pre-deformed F316 Stainless Steel[J]. Chinese Journal of Materials Research, 2019, 33(7): 497-504.

全文: PDF(15585 KB)   HTML
摘要: 

研究了在200 MPa应力下一级应变硬化F316奥氏体不锈钢在650℃、680℃和700℃的蠕变性能和蠕变断裂行为。结果表明: 在200 MPa 恒定应力下蠕变温度越高其蠕变寿命越短,稳态蠕变速率越大,由应力加载引起的瞬时应变越大。蠕变断裂方式主要为韧性断裂。蠕变孔洞主要分布在三叉晶界等脆弱部位,距离断口越远试样中孔洞的平均尺寸和孔洞面积百分比越小。在与断口距离相同的位置上,随着蠕变温度的提高蠕变孔洞的平均尺寸和面积百分比均明显增大。与未预应变的F316不锈钢相比,具有高密度孪晶的一级应变硬化F316不锈钢具有更大的蠕变抗力。分别基于Larson-Miller 参数法和θ参数法外推计算了350℃/200 MPa下的蠕变寿命,θ参数法的拟合曲线与实际蠕变曲线吻合得较好。根据Larson-Miller参数法和θ参数法,探讨了350℃/200 MPa下一级应变硬化F316奥氏体不锈钢长期服役蠕变可靠性。

关键词 金属材料F316奥氏体不锈钢蠕变Larson-Miller参数法θ参数法    
Abstract

Creep properties of the pre-deformed F316 stainless steel by 200 MPa at 650℃, 670℃ and 700℃ were investigated. Results show that by a constant tensile stress of 200 MPa, the time to rupture of the pre-deformed F316 stainless steel decreases, while the steady creep rate and the instantaneous creep strain increase with increasing creep temperature. Ductile fracture is the dominant rupture mode for the pre-deformed F316 stainless steel. Creep cavities are mainly located in the triple junctions of grain boundaries, and the average diameter and the area ratio of the voids decrease in the location with the increasing distance to the fracture surface. In the region with the same distance to the fracture surface, the average diameter and area percentage of the voids increase obviously with the increasing creep temperature. The present pre-deformed F316 stainless steel with high density of twins has a better creep resistance than that of non-pre-deformed ones. Time to rupture by 200 MPa at 350℃ was estimated by using the Larson-Miller and θ-projection methods, respectively. The results show that the θ-projection method can give a better correlation. Besides, the long-term creep reliability of the F316 stainless steel served by 200 MP at 350℃ was discussed based on the Larson-Miller and θ-projection methods.

Key wordsmetallic materials    F316,austenite stainless steel    creep properties    Larson-Miller parameter method    θ-projection method
收稿日期: 2018-11-27     
ZTFLH:  TG142.71  
基金资助:国家科技重大专项(2013ZX06002-002);国家自然科学基金(51771207);国家自然科学基金(51671050)
作者简介: 王冬颖,女,1975年生,硕士
图1  一级应变硬化F316奥氏体不锈钢的原始态照片
图2  一级应变硬化F316奥氏体不锈钢在恒应力为200 MPa、温度分别为650℃、680℃和700℃条件下的蠕变应变-时间曲线和蠕变应变速率-时间曲线
Sample numberTemperature/℃

Stress

/MPa

Time to rupture

/h

Initial

/%

Creep strain

/%

Minimum creep

rate/h-1

1#650200767.7670.1489.0302.285×10-5
2#680200148.2400.17014.8402.538×10-4
3#70020050.8160.19028.6309.840×10-4
表1  一级应变硬化F316奥氏体不锈钢在恒应力200 MPa,温度分别在650℃、680℃和700℃条件下的蠕变性能
图3  在恒应力为200 MPa不同温度下蠕变样品断口的SEM照片
图4  恒应力为200 MPa、不同温度蠕变断裂后样品表面的显微组织
图5  预变形态和未变形态F316不锈钢蠕变数据的比较
图6  在恒应力为200 MPa不同温度下蠕变断裂后的显微组织TEM照片
Temperature/Kθ1θ2θ3θ4
923(650℃)2.9808×10-13.5025×10-23.4337×10-13.5162×10-3
973(700℃)1.5569×10-11.33361.8128×10-14.3043×10-2
表2  两个温度下的蠕变曲线拟合得到的θi参数
ii=1i=2i=3i=4
Ai4.6813-3.0634×101-1.3803×101-2.2535×10
Bi-5.6414×10-33.1613×10-21.4452×10-22.1756×10-2
表3  应力为200 MPa时所对应的Ai、Bi值
θ1θ2θ3θ4
2.0188×10-13.1101×10-19.3178×10-11.5804×10-2
表4  预测得到的680℃、200 MPa蠕变曲线θi参数
θ1θ2θ3θ4
0.14681×1021.1500×10-111.5857×10-51.0500×10-9
表5  预测得到的350℃、200 MPa蠕变曲线θi参数
图7  用θ参数法预测的200 MPa、两种温度蠕变曲线与实际曲线的比较
[1] Allen T, Busby J, Meyer M, et al. Materials challenges for nuclear systems [J]. Mater. Today, 2010, 13(12): 14
[2] Zinklea S J. Materials challenges in nuclear energy [J]. Acta Mater., 2013, 61(3): 735
[3] HelmutWolf, Mathew M D, Mannan S L, et al. Prediction of creep parameters of type 316 stainless steel under service conditions using the π-projection concept [J]. Mater. Sci. Eng., 1992, 159(2): 199
[4] Xu H. Analysis of high temperature creep relaxation of bolted joint [J]. Lubr. Eng., 2013
[5] Wright J K, Lillo T M, Wright R N, et al. Creep and creep-rupture of Alloy 617 [J]. Nucl. Eng. Des., 2018, 329: 142
[6] Yang W Y, Li Z W. Prediction of remaining life of 12Cr1MoV steel for main steam pipe material by θ method [J]. Acta Metall. Sin., 1999(7): 721
[6] (杨王玥, 李志文. θ法预测12Cr1MoV钢主蒸汽管道材料剩余寿命 [J]. 金属学报, 1999(7): 721)
[7] An Z L, Xuan F Z, Tu S D. High temperature creep performance of 316L stainless steel for diffusion welded joint [J]. Pressure vessel Technology, 2011, 28(7): 6
[7] (安子良, 轩福贞, 涂善东. 316L不锈钢扩散焊接头高温蠕变性能 [J]. 压力容器, 2011, 28(7): 6)
[8] Yoda Y, Toshinori Y, Nobuhiro T. Plastic deformation and creep damage evaluations of type 316 austenitic stainless steels by EBSD [J]. Mater. Charact. , 2010, 61(10): 913
[9] Kumar J G, Laha K. Small punch creep deformation and rupture behavior of 316L(N) stainless steel [J]. Mater. Sci. Eng., A, 2015, 641: 315
[10] Whittaker M T, Evans M, Wilshire B. Long-term creep data prediction for type 316H stainless steel [J]. Mater. Sci. Eng., A, 2012, 552: 145
[11] Turski M, Bouchard P J, Steuwer A, et al. Residual stress driven creep cracking in AISI Type 316 stainless steel [J]. Acta Mater., 2008, 56(14): 3598
[12] Lovell A J, Chin B A, Gilbert E R. In-reactor creep-rupture of 20-percent of cold-worked AISI 316 stainless steel [J]. J. Mater. Sci., 1981, 16(4): 870
[13] John Paul Foster, KermitBunde, Robert Gilbert E. Stress state dependence of transient irradiation creep in 20% cold worked 316 stainless steel [J]. J. Nucl. Mater., 1998, 257(2): 118
[14] John Paul Foster, KermitBunde, Grossbeck M L, et al. Temperature dependence of the 20% cold worked 316 stainless steel steady state irradiation creep rate [J]. J. Nucl. Mater., 1999, 270(3): 357
[15] People's Republic of China General Administration of quality supervision and quarantine, Metallic materials-uniaxial creep testing method in tension [S]. GB/T 2039-2012
[15] (中华人民共和国国家质量监督检疫总局, 金属材料单轴拉伸蠕变试验方法 [S]. GB/T 2039-2012)
[16] Liu X Y, Pan Q L, Lu Z L, et al. Creep behavior of Al-Cu-Mg-Ag heat-resistant alloy at elevater temperature [J]. Acta Metall. Sin. 2011, 47(1): 53
[17] Hu G X, Cai X, Rong Y H. Fundamentals of Materials Science [M]. Shanghai: Shang Hai Jiao Tong University Press, 2006
[17] (胡赓祥, 蔡珣, 戒咏华. 材料科学基础. 第2版 [M]. 上海: 上海交通大学出版社, 2006)
[18] Zhao J, Gong J, Saboo A, et al. Dislocation-based modeling of long-term creep behaviors of Grade 91 steels [J]. Acta Mater., 2018
[19] Wang S J, Jozaghi T., Karaman I., et al. Hierarchical evolution and thermal stability of microstructure with deformation twins in 316 stainless steel [J]. Mater. Sci. Eng., A, 2017, 694: 121
[20] Wirmark G, Nilsson J O, Dunlop G L. Sliding at twin boundaries during high-temperature creep [J]. Philos. Mag. A, 1981, 43(1): 93
[21] Wang L Y, Song X M, Luo X M, et al. 3D X-ray tomography characterization of creep cavities in small-punch tested 316 stainless steels [J]. Mater. Sci. Eng., A, 2018, 724: 69
[22] National Research Institute for Metals (NRIM) Creep Data Sheet, No.14B for 18Cr-12Ni-Mo stainless steel plates [DB/OL]. JIS SUS 316-HP. 1988
[23] National Research Institute for Metals (NRIM) Creep Data Sheet, No.15B for 18Cr-12Ni-Mo stainless steel bars [DB/OL]. JIS SUS 316-B. 1988
[24] Meyers M A, Chawla K K. Mechanical behavior of materials [M]. 2009: Chambridge University Press.
[25] Larson F R. A time-temperature relationship for rupture and creep stresses [J]. Transactions of American Society of Mechanical Engineers, 1952, 74: 765
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] 刘天福, 张滨, 张均锋, 徐强, 宋竹满, 张广平. 缺口应力集中系数对TC4 ELI合金低周疲劳性能的影响[J]. 材料研究学报, 2023, 37(7): 511-522.