Please wait a minute...
材料研究学报  2019, Vol. 33 Issue (5): 321-330    DOI: 10.11901/1005.3093.2018.665
  研究论文 本期目录 | 过刊浏览 |
铜绿假单胞菌对2205双相不锈钢腐蚀行为的影响
周秩仁1,2,张欢欢1,刘玉芝1,赵颖1()
1. 中国科学院深圳先进技术研究院 深圳 518055
2. 中国科学院大学 北京 100049
Microbiologically Influenced Corrosion of 2205 Duplex Stainless Steel by Marine Pseudomonas aeruginosa
Zhiren ZHOU1,2,Huanhuan ZHANG1,Yuzhi LIU1,Ying ZHAO1()
1. Shenzhen Institutes of Advanced Technology,Chinese Academy of Sciences,Shenzhen 518055,China
2. University of Chinese Academy of Sciences,Beijing 100049,China
引用本文:

周秩仁,张欢欢,刘玉芝,赵颖. 铜绿假单胞菌对2205双相不锈钢腐蚀行为的影响[J]. 材料研究学报, 2019, 33(5): 321-330.
Zhiren ZHOU, Huanhuan ZHANG, Yuzhi LIU, Ying ZHAO. Microbiologically Influenced Corrosion of 2205 Duplex Stainless Steel by Marine Pseudomonas aeruginosa[J]. Chinese Journal of Materials Research, 2019, 33(5): 321-330.

全文: PDF(12686 KB)   HTML
摘要: 

将具有(111)择优取向的岛状奥氏体相嵌入连续铁素体的2205双相不锈钢(2205 DSS)工作面浸泡在铜绿假单胞菌(P. aeruginosa)中进行电化学测试,研究浸泡时间对2205 DSS 微生物腐蚀行为的影响。开路电位(OCP)、线性极化电阻(LPR)以及电化学阻抗谱(EIS)表明,在7 d浸泡期的无菌溶液中测得的EOCP、极化电阻(Rp)和电荷转移电阻(Rct)均比在有菌溶液中的大,表明铜绿假单胞菌加速了2205 DSS的腐蚀。动电位极化曲线表明,2205 DSS在无菌和有菌溶液中的维钝电流密度(ip)都随着浸泡时间的延长而不断增大,且在浸泡1 d、3 d、7 d的每个时间点有菌溶液的ip均比无菌环境的大,进一步证明铜绿假单胞菌加速了2205 DSS的腐蚀进程。扫描电子显微镜(SEM)结果表明,在有菌溶液中随着浸泡时间的延长表面粘附的细菌量逐渐增多,浸泡3 d后样品表面的细菌聚集成一个个小团簇,浸泡7 d菌落进一步聚集形成细菌生物膜。对腐蚀后样品表面局部腐蚀形貌的观察发现,细菌生物膜的形成加速了表面局部腐蚀的发生,导致严重的局部腐蚀。X射线光电子能谱(XPS)结果表明,在存在铜绿假单胞菌的条件下2205 DSS表面形成溶于水的CrO3,使MIC点蚀发生。

关键词 金属材料双相不锈钢微生物腐蚀铜绿假单胞菌生物膜    
Abstract

The MIC behavior of 2205 duplex stainless steel (2205 DSS) caused by the marine Pseudomonas aeruginosa (P. aeruginosa) with different soaking time was investigated through electrochemical testing techniques. Results show that the surface of 2205 DSS plate presents a microstructure composed of continuous ferrite matrix with uniformly distributed elongated islets of austenite phase with (111) preferred orientation. The open circuit potential EOCP, polarization resistance (Rp), and charge transfer resistance (Rct) measured in the sterile medium were larger than those in the P. aeruginosa inoculated medium during the whole soaking period of 7 d, indicating that P. aeruginosa accelerated the corrosion of 2205 DSS; The maintaining passivity current density (ip) of the 2205 DSS increases with the immersion time in both sterile and P. aeruginosa inoculated medium, whilst, the value of which during immersion in the bacterial solution was higher than that in the sterile solution for 1 d, 3 d, and 7 d respectively, the fact further proved that P. aeruginosa accelerated the corrosion process of 2205 DSS; Scanning electron microscopy (SEM) results show that the amount of bacteria adhering to the steel surface gradually increased with the immersion time in the bacteria solution. After soaking for 3 days, the bacteria on the steel aggregated to form small clusters, and the bacteria aggregated to form a bacterial biofilm after 7 days. The bacterial biofilm accelerates the occurrence of pits, and later resulting in severe localized corrosion. X-ray photoelectron spectroscopy (XPS) results revealed that the water soluble CrO3 could form on the 2205 DSS surface in the P. aeruginosa inoculated medium, which may be the inducement responsible to the MIC related pitting corrosion.

Key wordsmetallic materials    duplex stainless steel    microbiologically influenced corrosion    Pseudomonas aeruginosa    biofilm
收稿日期: 2018-11-19     
ZTFLH:  TG172.5  
基金资助:国家自然科学基金(51501218);深圳市基础研究(JCYJ20160608153641020)
作者简介: 周秩仁,男,1989年生,硕士生
ElementSiMnPSNiCrMoNCFe
2205 DSS0.511.140.03<0.0013.8923.223.100.17<0.03Bal.
表1  2205 DSS的化学成分(质量分数,%)
图1  已报道的[16]和本文使用的2205 DSS的金相组织
图2  已报道的[16]和本文使用的2205 DSS工作面的XRD谱
图3  在无菌和有菌溶液中对2205 DSS 连续7 d测试的OCP和LPR结果
图4  2205 DSS在无菌溶液和有菌溶液中的能奎斯特图和波德图
图5  用于拟合2205 DSS在无菌溶液和有菌溶液中阻抗谱的物理模型和相应的等效电路

Time

/d

Rs

/Ω·cm2

QCPE×10?5

?1·Sn·cm?2

n1

Rb

/Ω·cm2

Qct×10?5

?1·Sn·cm?2

n2

Rct

/Ω·cm2

Sterile06.1955.5800.86764.790×105
0.56.0369.9490.83502.858×105
16.1549.3640.83014.324×104
36.1227.9750.83852.523×104
76.0527.9420.82202.463×104
P. aeruginosa06.5462.7970.91808.5434.5200.83032.681×105
0.56.2523.0930.90217.5357.8590.78999.761×104
16.4201.7780.95157.2317.4270.80083.248×104
36.2877.3180.81955.0521.0540.92662.478×104
76.1534.2390.84969.7673.4090.90501.715×104
表2  2205 DSS在无菌溶液和有菌溶液中的阻抗谱的拟合参数
图6  2205 DSS在无菌和有菌溶液中浸泡1 d、3 d和7 d的动电位极化曲线
SampleEcorrvs. SCE/Vip/μA·cm-2Epitvs. SCE/VΔEvs. SCE/V
SterileDay 1-0.43551.4901.41951.8031
Day 3-0.43661.7541.40701.7726
Day 7-0.44042.0041.39451.7710
P. aeruginosaDay 1-0.44682.2691.41151.7883
Day 3-0.44302.9171.41641.7939
Day 7-0.44013.5151.38051.7566
表3  2205 DSS动电位极化曲线的相关拟合参数
图7  2205 DSS在无菌溶液和有菌溶液中的动电位极化曲线
图8  动电位极化后2205 DSS样品表面的SEM形貌
图9  2205 DSS在无菌环境和有菌溶液浸泡7 d除去腐蚀产物和生物膜后表面的SEM形貌
图10  2205 DSS在无菌环境和有菌溶液下浸泡7 d除去膜后的局部腐蚀形貌和局部腐蚀深度分析和平均腐蚀深度比较 (*P < 0.05 与无菌环境比较)
图11  2205 DSS在无菌环境和有菌环境下浸泡7 d后表面的XPS宽谱和高分辨XPS Cr 2p光谱
SampleCNOFeCrNiCl
Sterile51.13.934.56.791.40.112.2
P. aeruginosa53.14.735.13.140.70.063.2
表4  2205 DSS在无菌和有菌环境下浸泡7 d后表面元素含量(原子分数,%)
[1] SongZ, FengH, HuS. Development of Chinese duplex stainless steel in recent years [J]. Journal of Iron and Steel Research, International, 2017, 24: 121
[2] HanD, JiangY M, ShiC, et al. Effect of temperature, chloride ion and pH on the crevice corrosion behavior of SAF 2205 duplex stainless steel in chloride solutions [J]. Journal of Materials Science, 2011, 47(2): 1018
[3] WangL X, LiH B, LiG P, et al. Microstructural Evolution and Flow Behavior of 2205 and 2507 Duplex Stainless Steel during Double Pass Hot Compressive Deformation [J]. Chinese Journal of materials Research, 2016, 32(12): 888
[3] 王立新, 李花兵, 李国平等. 2205和2507双相不锈钢双道次热压缩条件下的微观组织演变及变形行为 [J]. 材料研究学报, 2016, 32(12): 888)
[4] AntonyP J, Singh RamanR K, MohanramR, et al. Influence of thermal aging on sulfate-reducing bacteria (SRB)-influenced corrosion behaviour of 2205 duplex stainless steel [J]. Corrosion Science, 2008, 50(7): 1858
[5] MoradiM, SongZ, YangL, et al. Effect of marine Pseudoalteromonas sp. on the microstructure and corrosion behaviour of 2205 duplex stainless steel [J]. Corrosion Science, 2014, 84: 103
[6] LiuW. Rapid MIC attack on 2205 duplex stainless steel pipe in a yacht [J]. Engineering Failure Analysis, 2014, 42: 109
[7] XuF L, DuanJ Z, LinC G, et al. Influence of Marine Aerobic Biofilms on Corrosion of 316L Stainless Steel [J]. Journal of Iron and Steel Research, International, 2015, 22(8): 715
[8] GabrielA A, UgayM C C F, SiringanM A T, et al. Atmospheric pressure plasma jet inactivation of Pseudomonas aeruginosa biofilms on stainless steel surfaces [J]. Innovative Food Science & Emerging Technologies, 2016, 36: 311
[9] ZhaoX D, WuP, JiangJ, et al. Study of effect of sulfate-reducing bacteria on corrosion interface between Q235 steel and sea mud [J]. Chinese Journal of Materials Research, 2007, 21(3): 230
[9] 赵晓栋, 吴 鹏, 姜 江等. 硫酸盐还原菌对海泥中Q235钢腐蚀界面的影响 [J]. 材料研究学报, 2007, 21(3): 230)
[10] BasheerR, GangaG, ChandranR K, et al. Effect of W-TiO2 composite to control microbiologically influenced corrosion on galvanized steel [J]. Appl Microbiol Biotechnol, 2013, 97(12): 5615
[11] MachucaL L, BaileyS I, GubnerR, et al. Effect of oxygen and biofilms on crevice corrosion of UNS S31803 and UNS N08825 in natural seawater [J]. Corrosion Science, 2013, 67: 242
[12] ZhaoY, ZhouE, LiuY, et al. Comparison of different electrochemical techniques for continuous monitoring of the microbiologically influenced corrosion of 2205 duplex stainless steel by marine Pseudomonas aeruginosa biofilm [J]. Corrosion Science, 2017, 126: 142
[13] XuD, XiaJ, ZhouE, et al. Accelerated corrosion of 2205 duplex stainless steel caused by marine aerobic Pseudomonas aeruginosa biofilm [J]. Bioelectrochemistry, 2017, 113: 1
[14] ZhaoY, ZhouE, XuD, et al. Laboratory investigation of microbiologically influenced corrosion of 2205 duplex stainless steel by marine Pseudomonas aeruginosa biofilm using electrochemical noise [J]. Corrosion Science, 2018, 143: 281
[15] XuD, ZhouE, ZhaoY, et al. Enhanced resistance of 2205 Cu-bearing duplex stainless steel towards microbiologically influenced corrosion by marine aerobic Pseudomonas aeruginosa biofilms [J]. Journal of Materials Science & Technology, 2017, 34(8): 1325
[16] LiP, ZhaoY, LiuY, et al. Effect of Cu Addition to 2205 Duplex Stainless Steel on the Resistance against Pitting Corrosion by the Pseudomonas aeruginosa Biofilm [J]. Journal of Materials Science & Technology, 2017, 33(7): 723
[17] Chinese National Standards,Method of nitric-hydrofluoric acids test for stainless steel,GB/T4334. 4–2000. [M]
[18] AbdulkareemE H, MemarzadehK, AllakerR P, et al. Anti-biofilm activity of zinc oxide and hydroxyapatite nanoparticles as dental implant coating materials [J]. J Dent, 2015, 43(12): 1462
[19] ZhouH, WeirM D, AntonucciJ M, et al. Evaluation of three-dimensional biofilms on antibacterial bonding agents containing novel quaternary ammonium methacrylates [J]. International Journal of Oral Science, 2014, 6(2): 77
[20] LiH, YangC, ZhouE, et al. Microbiologically influenced corrosion behavior of S32654 super austenitic stainless steel in the presence of marine Pseudomonas aeruginosa biofilm [J]. Journal of Materials Science & Technology, 2017, 33(12): 1596
[21] YuanS J, PehkonenS O. Microbiologically influenced corrosion of 304 stainless steel by aerobic Pseudomonas NCIMB 2021 bacteria: AFM and XPS study [J]. Colloids and Surfaces B: Biointerfaces 2007, 59: 87
[22] ZhouE, LiH, YangC, et al. Accelerated corrosion of 2304 duplex stainless steel by marine Pseudomonas aeruginosa biofilm [J]. International Biodeterioration & Biodegradation, 2018, 127: 1
[23] XiaJ, XuD K, NanL, et al. Study on Mechanisms of Microbiologically Influenced Corrision of Metal from the Perspective of Bioelectrochemistry and Bio-energetics [J]. Chinese Journal of Materials Research, 2016, 30 (3): 161
[23] 夏 进, 徐大可, 南 黎等. 从生物能量学和生物电化学角度研究金属微生物腐蚀的机理 [J]. 材料研究学报, 2016, 30 (3): 161)
[24] ChenG, ClaytonC R. The Influence of Sulfate-Reducing Bacteria on the Passivity of Type 317L Austenitic Stainless Steel [J]. Journal of The Electrochemical Society, 1998, 145(6): 1914
[25] LiH, ZhouE, ZhangD, et al. Microbiologically Influenced Corrosion of 2707 Hyper-Duplex Stainless Steel by Marine Pseudomonas aeruginosa Biofilm [J]. scientific reports, 2016, 6: 20190
[26] YongX Y, FengJ, ChenY L, et al. Enhancement of bioelectricity generation by cofactor manipulation in microbial fuel cell [J]. Biosens Bioelectron, 2014, 56: 19
[27] YongX Y, ShiD Y, ChenY L, et al. Enhancement of bioelectricity generation by manipulation of the electron shuttles synthesis pathway in microbial fuel cells [J]. Bioresour Technol, 2014, 152: 220
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] 刘天福, 张滨, 张均锋, 徐强, 宋竹满, 张广平. 缺口应力集中系数对TC4 ELI合金低周疲劳性能的影响[J]. 材料研究学报, 2023, 37(7): 511-522.