Please wait a minute...
材料研究学报  2019, Vol. 33 Issue (7): 505-514    DOI: 10.11901/1005.3093.2018.664
  研究论文 本期目录 | 过刊浏览 |
功能化石墨烯/埃洛石纳米管对聚丙烯的协同强韧化改性研究
王正君1,刘虹财1,郭怡1,卞军1(),李建保1,蔺海兰1(),鲁云2
1. 西华大学材料科学与工程学院 成都 610039
2. 千叶大学科学与工程研究院 机械工程系 千叶 262-8522 日本
Synergistic Strengthening-Toughening Modification of Polypropylene with Functional Graphene/Halloysite Nanotubes
Zhengjun WANG1,Hongcai LIU1,Yi GUO1,Jun BIAN1(),Jianbao LI1,Hailan LIN1(),Yun LU2
1. College of Materials Science and Engineering, Xihua University, Chengdu 610039, China
2. Department of Mechanical Engineering, Graduate School of Science and Engineering, Chiba University, Chiba 262-8522, Japan
引用本文:

王正君,刘虹财,郭怡,卞军,李建保,蔺海兰,鲁云. 功能化石墨烯/埃洛石纳米管对聚丙烯的协同强韧化改性研究[J]. 材料研究学报, 2019, 33(7): 505-514.
Zhengjun WANG, Hongcai LIU, Yi GUO, Jun BIAN, Jianbao LI, Hailan LIN, Yun LU. Synergistic Strengthening-Toughening Modification of Polypropylene with Functional Graphene/Halloysite Nanotubes[J]. Chinese Journal of Materials Research, 2019, 33(7): 505-514.

全文: PDF(12011 KB)   HTML
摘要: 

以功能化氧化石墨烯(GO)-埃洛石纳米管(HNTs)杂化材料(GO@HNTs)为纳米填料,以聚丙烯(PP)为基体,通过熔融共混法制备了不同GO@HNTs 含量的GO@HNTs/PP纳米复合材材料,并对所得杂化填料和PP纳米复合材料的结构与性能进行系统研究。研究结果表明,功能化GO与HNTs之间存在化学相互作用,二者之间形成的“屏障效应”抑制了彼此在PP基体中的团聚。仅添加0.5%GO@HNTs杂化纳米填料后,PP复合材料的拉伸强度和冲击强度分别较纯PP提高了17.5%和80.4%,与单独添加相同含量的GO或HNTs所得复合材料的力学性能相比,GO@HNTs杂化纳米填料对PP基体具有明显的协同增强增韧改性作用。与纯PP相比,GO@HNTs/PP试样表现出更高的储能模量、损耗模量和玻璃化转变峰值。由于GO@HNTs的“异相成核效应”和“物理热阻效应”,有效提高了PP纳米复合材料的结晶温度、熔融温度、结晶度和耐热分解温度。

关键词 复合材料聚丙烯(PP)石墨烯埃洛石纳米管性能    
Abstract

Nanocomposites of GO@HNTs/PP were prepared through melt blending method with polypropylene (PP) as matrix and hybrid nanofillers (GO@HNTs) composed of functionalized graphene oxide (GO) and halloysite nanotubes (HNTs) as filler. The structures and properties of the prepared hybrid nanofillers and PP nanocomposites were systematically investigated. Results show that there is chemical interactions between functionalized GO and HNTs, resulting in formation a "barrier effect" between them and inhibit the aggregation of the two species in the PP matrix. The tensile strength and impact strength of PP nanocomposites with 0.5% GO@HNTs hybrid nano-filler increased by 17.5% and 80.4%, respectively, compared with those of pure PP. Compared with the mechanical properties of composites prepared by adding the same content GO or HNTs alone, GO@HNTs hybrid nano-filler had obvious synergistic strengthening-toughening effect on the PP matrix. GO@HNTs/PP exhibited higher storage modulus, loss modulus and glass transitional temperatures than those of pure PP. The crystallization temperature, melting temperature, crystallinity and thermal decomposition temperature of PP nanocomposites are effectively increased due to the “heterogeneous nucleation effect” and “physical insulation effect” of GO@HNTs.

Key wordsComposite    Polypropylene (PP)    Graphene    Halloysite Nanotube (HNTs)    Properties
收稿日期: 2018-11-19     
ZTFLH:  TQ325.1+4  
基金资助:国家教育部春晖计划合作项目(Z2018088);国家教育部春晖计划合作项目(Z2017070);西华大学大健康管理促进中心开放课题基金(DJKG2019-002);西华大学“西华杯”大学生大创项目(2019051);创新创业环境下“大材料学科”专业综合改革与实践教学团队项目(05050028)
作者简介: 王正君,男,1991年生,硕士生
图1  GO (0.05 mg/mL)、GO-g-TA (0.05 mg/mL), HNTs (0.05 mg/mL)、GO@HNTs (0.05 mg/mL) 纳米杂化填料的紫外-可见光谱曲线及GO@HNTs通过线性叠加关系耦合所得吸收强度理论变化曲线
图2  NGP、GO、GO-g-TA、HNTs和GO@HNTs纳米杂化填料的红外光谱图
图3  NGP、GO、GO-g-TA、HNTs和 GO@HNTs 纳米杂化填料的拉曼光谱图
图4  NGP、GO,GO-g-TA、HNTs和GO@HNTs杂化纳米填料的X射线衍射图谱
图5  填料的SEM照片
图6  纯PP及复合材料的SEM照片
图7  纯PP和不同GO@HNTs杂化纳米填料含量的GO@HNTs/PP 纳米复合材料的X射线衍射图
图8  PP纳米复合材料的典型力学性能
图9  纯PP和不同GO@HNTs杂化纳米填料含量的GO@HNTs/PP 纳米复合材料的动态力学性能
GO@HNTs/%Tend/℃Ts/℃Tmax/℃
0492.0453.7481.1
0.25494.9453.6485.1
0.5494.8454.6485.8
1483.8468.2487.8
2495.5455.1489.5
表1  纯PP和PP纳米复合材料的TGA测试结果
图10  纯PP和不同GO@HNTs杂化纳米填料含量的GO@HNTs/PP 纳米复合材料的DSC曲线
GO@HNTs/%Tcp/℃Hc/J·g-1Tmp/℃Hm/J·g-1Xc/%
0108.888.6163.078.937.8
0.25114.090.3165.379.738.2
0.5114.991.3164.981.639.2
1112.793.8168.483.040.1
2113.793.9167.987.342.6
表2  纯PP和PP纳米复合材料的DSC测试结果
[1] Geim A K, Novoselov K S. The rise of graphene [J]. Nat. Mater., 2007, 6(3): 183
[2] Stankovich S, Dikin D A, Dommett G H B, et al. Graphene-based composite materials [J]. Nature, 2006, 442, 282
[3] He X L, Yu Y F, Chen Q, et al. Recent advances in graphene based composite materials [J]. Mater. Rev., 2013, 27(7100): 22
[4] Kuilla T, Bhadra S, Yao D H, et al. Recent advances in graphene based polymer composites [J]. Prog. Polym. Sci., 2010, 35(11): 1350
[5] Huang X. Graphene-based composites [J]. Chem.Soc. Rev., 2012, 41(2): 666
[6] Sengupta R, Bhattacharya M, Band-yopadhyay S, et al. A review on the mechanical and electrical properties of graphite and modified graphite reinforced polymer composites [J]. Prog. Polym. Sci., 2011, 36(5): 638
[7] Ramanathan T, Abdala A A, Stankovich S, et al. Functionalized graphene sheets for polymer nanocomposites [J]. Nat. Nanotechnol., 2008, 3(6): 327
[8] Lonkar S P, Deshmukh Y S, Abdala A A. Recent advances in chemical modifications of graphene [J]. Nano. Res., 2015, 8(4): 1039
[9] Young S Y, Yo H B, Do H K, et al. Reinforcing effects of adding alkylated graphene oxide to polypropylene [J]. Carbon, 2011, 49(11): 3553
[10] Cao Y W, Zhang J, Feng J C, et al. Compatibilization of immiscible polymer blends using graphene oxide sheets [J]. ACS. Nano., 2011, 5(7): 5920
[11] Dreyer D R, Park S, Bielawski C W, et al. The chemistry of graphene oxide [J]. Chem. Soc. Rev., 2010, 39(1): 228
[12] Lin Y, Jin J, Song M. Preparation and characterisation of covalent polymer functionalized graphene oxide [J]. J. Mater. Chem., 2011, 21(10): 3455
[13] Stankovich S, Piner R D, Nguyen S T, et al. Synthesis and exfoliation of isocyanate-treated graphene oxide nanoplatelets [J]. Carbon, 2006, 44(15): 3342
[14] Xu C, Wu X, Zhu J, et al. Synthesis of amphiphilic graphite oxide [J]. Carbon, 2008, 46(2): 386
[15] Bian J, Wei X W, Lin H L, et al. Preparation and characterization of modified graphite oxide/poly (propylene carbonate) composites by solution intercalation [J]. Polym. Degrad. Stabil., 2011, 96(10): 1833
[16] Bian J, Lin H L, He F X, et al. A facile approach to selective reduction and functionalization of graphene oxide and its application in fabrication of multifunctional polypropylene nanocomposites [J]. Polym. Compos., 2015, 7(2): 131
[17] Bian J, Wang Z J, Lin H L, et al. Thermal and mechanical properties of polypropylene nanocomposites reinforced with nano-SiO2 functionalized graphene oxide [J]. Compos. Part A, 2017, 97: 120
[18] Bian J, Wang G, Lin H L, et al. HDPE composites strengthened-toughened synergistically by L-aspartic acid functionalized graphene/carbon nanotubes hybrid nanomaterials [J]. J. Appl. Polym. Sci., 2017, 134(29). DOI: 10.1002/APP.45055
[19] Kavitha T, Gopalan A I, Lee K P, et al. Glucose sensing, photocatalytic and antibacterial properties of graphene-ZnO nanoparticle hybrids [J]. Carbon, 2012, 50(8): 2994
[20] Bell N J, Yun H N , Du A J, et al. Understanding the enhancement in photoelectrochemical properties of photocatalytically prepared tio2-reduced graphene oxide composite [J]. J. Phys. Chem. C., 2011, 115(13): 6004
[21] Song J, Xu L, Zhou C Y, et al. Synthesis of graphene oxide based CuO nanoparticles composite electrode for highly enhanced nonenzymatic glucose detection [J]. ACS. Appl. Mater. & Inter., 2013, 5(24): 12928
[22] Haldorai Y, Kim B K, Jo Y L, et al. Ag@graphene oxide nanocomposite as an efficient visible-light plasmonic photocatalyst for the degradation of organic pollutants: A facile green synthetic approach [J]. Mater. Chem. & Phys., 2014, 143(3): 1452
[23] Jiang T, Kuila T, Kim N H, et al. Enhanced mechanical properties of silanized silica nanoparticle attached graphene oxide/epoxy composites [J]. Compos. Sci. Technol., 2013, 79: 115
[24] Hsiao M C, Ma C C M, Chiang J C, et al. Thermally conductive and electrically insulating epoxy nanocomposites with thermally reduced graphene oxide-silica hybrid nanosheets [J]. Nanoscale, 2013, 5(13): 5863
[25] Kou L, Gao C. Making silica nanoparticle-covered graphene oxide nanohybrids as general building blocks for large-area superhydrophilic coatings [J]. Nanoscale, 2011, 3(2): 519
[26] Yang S Y, Lin W N, Huang Y L, et al. Synergetic effects of graphene platelets and carbon nanotubes on the mechanical and thermal properties of epoxy composites [J]. Carbon, 2011, 49(3): 793
[27] Yan J, Wei T, Fan Z, et al. Preparation of graphene nanosheet/carbon nanotube/polyaniline composite as electrode material for supercapacitors [J]. J. Power Sources, 2010, 195(9): 3041
[28] Fan Z, Yan J, Zhi L, et al. A Three-dimensional carbon nanotube/graphene sandwich and its application as electrode in supercapacitors [J]. Adv. Mater., 2010, 22(33): 3723
[29] Lee J, Kim Y K, Min D H. Laser desorption/ionization mass spectrometric assay for phospholipase activity based on graphene oxide/carbon nanotube double-layer films [J]. J. Am. Chem. Soc., 2010, 132(42): 14714
[30] Yang S Y, Chang K H, Lee Y F, et al. Constructing a hierarchical graphene-carbon nanotube architecture for enhancing exposure of graphene and electrochemical activity of Pt nanoclusters [J]. Electrochem. Commun., 2010, 12(9): 1206
[31] Tung V C, Chen L M, Allen M J, et al. Low-temperature solution processing of graphene-carbon nanotube hybrid materials for high-performance transparent conductors [J]. Nano. Lett., 2009, 9(5): 1949
[32] Yoo E J, Kim J, Hosono E, et al. Large reversible Li storage of graphene nanosheet families for use in rechargeable lithium ion batteries [J]. Nano. Lett., 2008, 8(8): 2277
[33] Wu W,Wu P J,He D,et al. Application progress of halloysite nanotube in polymer nanocomposites [J]. Chem. Indus. Eng. Prog., 2011, 30(12): 2647
[33] (伍巍, 吴鹏君, 何 丁等. 长链硅烷对埃洛石纳米管的表面改性研究 [J]. 化工进展, 2011, 30(12): 2647)
[34] Jia Z, Guo B, Jia D. Advances in rubber/halloysite nanotubes nanocomposites [J]. J. Nanosci. Nanotechno., 2014, 14(2): 1758
[35] Yu L, Wang H X, Zhang Y T, et al. Recent advances in halloysite nanotube derived composites for water treatment [J]. Environ. Sci: Nano., 2016, 3(1): 28
[36] Ravindra K, Manasi G, Sheetal G, et al. Halloysite nanotubes and applications: a review [J]. J. Adv. Sci. Res., 2012, 3(2): 25
[37] Swapna V P, Selvin T P, Suresh K I, et al. Thermal properties of poly (vinyl alcohol)(PVA)/halloysite nanotubes reinforced nanocomposites [J]. Int. J. Plas. Technol., 2015, 19(1): 124
[38] Long G B, Trinh D N, Nguyen T T. Grafting of poly (poly (ethylene glycol) methacrylate) onto halloysite nanotubes via surface-initiated atom transfer radical polymerization [J]. J. Nanosci. Nanotechnol., 2019, 19(2): 927
[39] Zhan Y Q, He S J, Wan X Y. Thermally and chemically stable poly(arylene ether nitrile)/halloysite nanotubes intercalated graphene oxide nanofibrous composite membranes for highly efficient oil/water emulsion separation in harsh environment [J]. J. Membrane.Sci., 2018, 567: 76
[40] Gaaz T S, Sulong A B, Akhtar M N, et al. Properties and applications of polyvinyl alcohol, halloysite nanotubes and their nanocomposites [J]. Molecules. 2015, 20(12): 22833
[41] Bian J, Wei X W, Lin H L, et al. Comparative study on the exfoliated expanded graphite nanosheet-PES composites prepared via different compounding method [J]. J. Appl. Polym. Sci., 2012; 12(5): 3247
[42] Wang W Z, Liu T X. Mechanical properties and morphologies of polypropylene composites synergistically filled by styrene-butadiene rubber and silica nanoparticles [J]. J. Appl. Polym. Sci., 2008, 109, 1654
[43] Chen W, Wu S, Lei Y, et al. Interfacial structure and performance of rubber/boehmite nanocomposites modified by methacrylic acid [J]. Polymer, 2011, 52(19): 4387
[44] Ferrari A C, Robertson J. Interpretation of Raman Spectra of Disordered and Amorphous Carbon [J]. Phys. Rev. B., 2000, 61: 14095
[45] Tuinstra F, Koenig J. L. Raman spectrum of graphite [J]. J. Chem.Phys., 1970, 53: 1126
[1] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[3] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[4] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[5] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[6] 陈晶晶, 占慧敏, 吴昊, 朱乔粼, 周丹, 李柯. 纳米晶CoNiCrFeMn高熵合金的拉伸力学性能[J]. 材料研究学报, 2023, 37(8): 614-624.
[7] 刘瑞峰, 仙运昌, 赵瑞, 周印梅, 王文先. 钛合金/不锈钢复合板的放电等离子烧结技术制备及其性能[J]. 材料研究学报, 2023, 37(8): 581-589.
[8] 季雨辰, 刘树和, 张天宇, 查成. MXene在锂硫电池中应用的研究进展[J]. 材料研究学报, 2023, 37(7): 481-494.
[9] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[10] 冯叶, 陈志勇, 姜肃猛, 宫骏, 单以银, 刘建荣, 王清江. 一种NiCrAlSiY涂层对Ti65钛合金板材循环氧化和室温力学性能的影响[J]. 材料研究学报, 2023, 37(7): 523-534.
[11] 王伟, 解泽磊, 屈怡珅, 常文娟, 彭怡晴, 金杰, 王快社. Graphene/SiO2 纳米复合材料作为水基润滑添加剂的摩擦学性能[J]. 材料研究学报, 2023, 37(7): 543-553.
[12] 史畅, 杜宇航, 赖利民, 肖思明, 郭宁, 郭胜锋. CrTaTi难熔中熵合金的力学性能和抗氧化性能[J]. 材料研究学报, 2023, 37(6): 443-452.
[13] 雷志国, 文胜平, 黄晖, 张二庆, 熊湘沅, 聂祚仁. 冷轧变形和添加SiAl-2Mg-0.8Cu(-Si)合金的组织和力学性能的影响[J]. 材料研究学报, 2023, 37(6): 463-471.
[14] 张藤心, 王函, 郝亚斌, 张建岗, 孙新阳, 曾尤. 基于界面氢键结构的石墨烯/聚合物复合材料的阻尼性能[J]. 材料研究学报, 2023, 37(6): 401-407.
[15] 王伟, 彭怡晴, 丁士杰, 常文娟, 高原, 王快社. Ti-6Al-4V合金表面石墨基粘结固体润滑涂层的高温摩擦学性能[J]. 材料研究学报, 2023, 37(6): 432-442.