Please wait a minute...
材料研究学报  2019, Vol. 33 Issue (7): 552-560    DOI: 10.11901/1005.3093.2018.596
  研究论文 本期目录 | 过刊浏览 |
微量Mg元素添加对Cu-Cr合金析出行为及性能的影响
邬善江1,王俊峰1,钟淑伟1,张建波2(),汪航2,杨斌1,2()
1. 江西理工大学材料科学与工程学院 赣州 341000
2. 江西理工大学工程研究院 赣州 341000
Effect of Trace Mg Addition on Precipitation Behavior and Properties of Cu-Cr Alloy
Shanjiang WU1,Junfeng WANG1,Shuwei ZHONG1,Jianbo ZHANG2(),Hang WANG2,Bin YANG1,2()
1. School of Material Science and Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China
2. Institute of Engineering Research, Jiangxi University of Science and Technology, Ganzhou 341000, China
引用本文:

邬善江,王俊峰,钟淑伟,张建波,汪航,杨斌. 微量Mg元素添加对Cu-Cr合金析出行为及性能的影响[J]. 材料研究学报, 2019, 33(7): 552-560.
Shanjiang WU, Junfeng WANG, Shuwei ZHONG, Jianbo ZHANG, Hang WANG, Bin YANG. Effect of Trace Mg Addition on Precipitation Behavior and Properties of Cu-Cr Alloy[J]. Chinese Journal of Materials Research, 2019, 33(7): 552-560.

全文: PDF(20752 KB)   HTML
摘要: 

通过熔炼铸造工艺制备了Cu-Cr和Cu-Cr-Mg合金,评价了Mg元素对Cu-Cr合金硬度、导电和抗软化性能的影响,研究了Mg元素对Cu-Cr合金析出相的细化作用,探讨了Mg元素的迁移行为。结果表明,相比于Cu-Cr二元合金,时效态Cu-Cr-Mg合金具有更高的硬度和软化温度,且保持较高的导电性能。两种合金的主要时效强化相均为纳米Cr析出相,Mg元素的加入抑制了纳米沉淀相的长大和结构转变,峰时效态Cu-Cr-Mg合金的析出相与基体可能仍保持共格界面关系,过时效态合金中出现与Heulser相结构相同的析出相,且峰时效态Cu-Cr-Mg合金经过高温保温处理后,其强化相的尺寸明显小于Cu-Cr合金析出相。EDS的结果表明,在时效初期Mg和Cr共存于析出相内部,而在时效后期析出相内部只有Cr元素存在,Mg元素发生迁移,同时理论估算结果显示,Mg元素可明显降低Cu(fcc)/Cr(bcc)之间的界面能,导致其偏聚于基体/析出相界面处,这可能是Mg元素能够细化析出相和提高合金性能的主要原因。

关键词 金属材料Cu-Cr系合金显微组织时效强化抗软化性能    
Abstract

Cu-Cr and Cu-Cr-Mg alloys were prepared by melting and casting process, then the effect of Mg addition on hardness, electrical properties and softening resistance of the alloys was assessed. The results show that after aging treatment, the hardness and softening temperature of the Cu-Cr-Mg alloy are higher than that of the Cu-Cr binary alloy, while the high electrical conductivity is maintained. The main strengthening mechanism of these two alloys is aging precipitation strengthening. The addition of Mg inhibits the growth and structural transformation of the nano-precipitates. The strengthening phase of the peak-aged Cu-Cr-Mg alloy still maintains a coherent interface with the matrix. The precipitate with the similar structure as Heulser phase is observed in the over-aging alloy. After post heat treatment of the peak-aged alloys, the size of the strengthening phase of Cu-Cr-Mg alloy is significantly smaller than that of the Cu-Cr alloy. Mg and Cr coexist in the precipitate at the early stage of aging, while in the later stage of aging, only Cr exists inside the precipitate. The theoretical estimation results show that Mg can significantly reduce the interfacial energy between Cu (fcc) and Cr (bcc), leading to segregation of Mg at the interface matrix/precipitate. This may be the main reason why Mg can refine the precipitates and improve the performance of the Cu-Cr alloy.

Key wordsmetallic materials    Cu-Cr system alloy    microstructure    aging strengthening    softening resistance
收稿日期: 2018-09-30     
ZTFLH:  TG146.1  
基金资助:国家重点研发计划(2016YFB0301400);国家自然科学基金(51461017);国家自然科学基金(51561008);江西省自然科学基金(20171ACB21044)
作者简介: 邬善江,男,1995年生,硕士生
AlloyCrMgCu
Cu-Cr0.37-Bal.
Cu-Cr-Mg0.340.16Bal.
表1  实验合金的成分(质量分数,%)
图1  时效工艺对Cu-Cr-(Mg)合金性能的影响
图2  500℃/1 h时效态Cu-Cr-(Mg)合金在不同温度保温1 h后的温度-硬度曲线
图3  500 ℃/0.5 h时效态合金TEM照片及选区电子衍射花样
图4  500℃/1 h时效态合金TEM照片及选区电子衍射花样
图5  500℃/4 h时效态合金TEM照片及选区电子衍射花样
图6  峰时效态Cu-Cr-(Mg)合金经600℃保温1 h后的TEM照片及选区电子衍射花样
图7  500℃/0.5 h时效态Cu-Cr-(Mg)合金的HRTEM像
PositionCuCrMg
Cu-0.37CrEDS 197.92.1-
EDS 2100--
Cu-0.34Cr-0.16MgEDS 196.52.11.4
表2  500℃/0.5 h时效态Cu-Cr-(Mg)合金EDS结果
图8  500℃/1 h时效态Cu-Cr-(Mg)合金HRTEM像
PositionCuCrMg
Cu-0.37CrEDS 197.82.2-
EDS 2100--
Cu-0.34Cr-0.16MgEDS 197.60.91.5
表3  500℃/1 h时效态Cu-Cr-(Mg)合金EDS结果
图9  500℃/4 h时效态Cu-Cr-(Mg)合金的HRTEM像
PositionCuCrMg
Cu-0.37CrEDS 197.22.8-
EDS 2100--
Cu-0.34Cr-0.16MgEDS 197.22.8-
表4  500℃/4 h时效态Cu-Cr-(Mg)合金EDS结果
[1] Shangina D V, Bochvar N R, Morozova A I, et al. Effect of chromium and zirconium content on structure, strength and electrical conductivity of Cu-Cr-Zr alloys after high pressure torsion [J]. Materials Letters, 2017, 199: 46
[2] Papillon A, Missiaen J M, Chaix J M, et al. Sintering mechanisms of Cu-Cr metallic composites [J]. International Journal of Refractory Metals & Hard Materials, 2017, 65: 9
[3] Fu H D, Xu S, Li W, et al. Effect of rolling and aging processes on microstructure and properties of Cu-Cr-Zr alloy [J]. Material Science and Engineering A, 2017, 700: 107
[4] Wang Y, Yan Q Z, Zhang X L, et al. Effect of copper powder on properties of Cu-based friction material[J]. Chinese Journal of Materials Research, 2013, 27(1): 37
[4] (王 晔, 燕青芝, 张肖路等. 铜粉对铜基摩擦材料性能的影响[J]. 材料研究学报, 2013, 27(1): 37)
[5] Chen J S, Yang B, Wang J F, et al. Effect of different Zr contents on properties and microstructure of Cu-Cr-Zr alloys [J]. Materials Research Express, 2018, 5(2): 1
[6] Chbihi A, Sauvage X, Blavette D. Atomic scale investigation of Cr precipitation in copper [J]. Acta Materialia, 2012, 60(11): 4575
[7] Vinogradov A, Patlan V, Suzuki Y, et al. Structure and properties of ultra-fine grain Cu-Cr-Zr alloy produced by equal-channel angular pressing [J]. Acta Materialia, 2002, 50(7): 1639
[8] Chakrabarti D J, Laughlin D E. The Cr-Cu (chromium-copper) system [J]. Bulletin of Alloy Phase Diagrams, 1984, 5(1): 59
[9] Deng J Q, Zhang X Q, Shang S Z, et al. Effect of Zr addition on the microstructure and properties of Cu-10Cr in situ composites [J]. Materials and Design, 2009, 30(10): 4444
[10] Yamane T. The foundation of high strength and high conductivity conductive copper alloy design [J]. Journal of the Japan Copper and Brass Research Association, 1990, 29: 13
[11] Kermajani M, Raygan S, Hanayi K, et al. Influence of thermomechanical treatment on microstructure and properties of electroslag remelted Cu-Cr-Zr alloy [J]. Materials Design, 2013, 51: 688
[12] Liu Y, Li Z, Jiang Y X, et al. The microstructure evolution and properties of a Cu-Cr-Ag alloy during thermal-mechanical treatment [J]. Journal of Materials Research, 2017, 32(7): 1324
[13] Zhang X P. Research of microstructures and properties of high strength and high conductivity Cu-Cr-In alloys [D]. Ganzhou: Jiangxi University of Science and Technology, 2015
[13] (张小平. 高强高导Cu-Cr-In合金的组织与性能研究 [D]. 赣州: 江西理工大学, 2015)
[14] Xie M, Liu J L, Lu X Y, et al. Investigation on the Cu-Cr-RE alloys by rapid solidification [J]. Materials Science Engineering A, 2001, 304(1): 529
[15] Zhang P C, Jie J C, Gao Y, et al. Influence of cold deformation and Ti element on the microstructure and properties of Cu-Cr system alloys [J]. Journal of Materials Research, 2015, 30(13): 2073
[16] Cheng J Y, Shen B, Yu F X. Precipitation in a Cu-Cr-Zr-Mg alloy during aging [J]. Materials Characterization, 2013, 81(4): 68
[17] Xiao X P, Liu R Q, Yi Z Y, et al. Two-step deforming and aging research on microstructure and properties of Cu-Cr-Zr-Mg alloy [J]. Materials Review, 2016, 30(12): 81
[17] (肖翔鹏, 柳瑞清, 易志勇等. 二级时效形变对Cu-Cr-Zr-Mg合金组织与性能影响研究[J]. 材料导报, 2016, 30(12): 81)
[18] Xia C D, Jia Y L, Zhang W, et al. Study of deformation and aging behaviors of a hot rolled-quenched Cu-Cr-Zr-Mg-Si alloy during thermomechanical treatments [J]. Materials Design, 2012, 39: 404
[19] Zhao Z Q, Xiao Z, Li Z, et al. Effect of magnesium on microstructure and properties of Cu-Cr alloy [J]. Journal of Alloys and Compounds, 2018, 752: 191
[20] Yu F X, Cheng J Y, Shen B. Precipitation sequence of Cu-Cr-Zr-Mg alloy during early aging stage [J]. The Chinese Journal of Nonferrous Metals, 2013, 23(12): 3360
[20] (余方新, 程建奕, 沈 斌. Cu-Cr-Zr-Mg合金早期时效析出贯序 [J]. 中国有色金属学报, 2013, 23(12): 3360)
[21] Su J H, Dong Q M, Liu P, et al. Research on aging precipitation in a Cu-Cr-Zr-Mg alloy [J]. Materials Science and Engineering A, 2005, 392(1–2): 422
[22] Peng L J, Xie H F, Huang G J, et al. The phase transformation and strengthening of a Cu-0.71wt% Cr alloy [J]. Journal of Alloys and Compounds, 2017, 708: 1096
[23] Liu Y, Xiao Z, Li Z, et al. Properties and microstructure evolution of Cu-Cr-Ag alloy with thermomechanical treatments [J]. Chinese Journal of Rare Metals, 2018, 42(4): 0337
[23] (刘 月, 肖 柱, 李 周等. 形变热处理对Cu-Cr-Ag合金组织和性能的影响 [J]. 稀有金属, 2018, 42(4): 0337)
[24] Qi Z F. Diffusion and phase transition in solid metals [M]. Beijing: Machinery Industry Press, 1998: 331
[24] (戚正风. 固态金属中的扩散与相变 [M]. 北京: 机械工业出版社, 1998: 331)
[25] Kaptay G. On the interfacial energy of coherent interfaces [J]. Acta Materialia, 2012, 60(19): 6804
[1] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[3] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[4] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[5] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[6] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[7] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[8] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[9] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[10] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[11] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[12] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[13] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[14] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[15] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.