Please wait a minute...
材料研究学报  2019, Vol. 33 Issue (5): 352-360    DOI: 10.11901/1005.3093.2018.574
  研究论文 本期目录 | 过刊浏览 |
C-ZIF-8@AC复合电极材料的制备及超电容性能研究
张传香1,2,江中仪3,戴玉明1,2,贺显聪1,2,丛园1,2,朱帅帅1,2
1. 南京工程学院材料科学与工程学院 南京 211167
2. 江苏省先进结构材料与应用技术重点实验室 南京 211167
3. 南京航空航天大学材料科学与技术学院 南京 210016
Preparation and Supercapacitance of C-ZIF-8@AC Composites Electrode Material
Chuanxiang ZHANG1,2,Zhongyi JIANG3,Yuming DAI1,2,Xiancong HE1,2,Yuan CONG1,2,Shuaishuai ZHU1,2
1. School of Materials Science and Engineering, Nanjing Institute of Technology, Nanjing 211167, China
2. Jiangsu Key Laboratory of Advanced Structural Materials and Application Technology, Nanjing 211167, China
3. College of Material Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
引用本文:

张传香,江中仪,戴玉明,贺显聪,丛园,朱帅帅. C-ZIF-8@AC复合电极材料的制备及超电容性能研究[J]. 材料研究学报, 2019, 33(5): 352-360.
Chuanxiang ZHANG, Zhongyi JIANG, Yuming DAI, Xiancong HE, Yuan CONG, Shuaishuai ZHU. Preparation and Supercapacitance of C-ZIF-8@AC Composites Electrode Material[J]. Chinese Journal of Materials Research, 2019, 33(5): 352-360.

全文: PDF(7904 KB)   HTML
摘要: 

在铅酸电池中添加一定量的碳可以同时发挥铅酸电池和超级电容器的优点,从而得到铅炭电池。因此,制备出在酸性溶液中稳定存在且具有理想比电容的碳材料尤为关键。通过低温液相和高温煅烧合成了一种新型的碳材料C-ZIF-8@活性炭(C-ZIF-8@AC),将其作为铅炭电池电极材料。采用场发射扫描电子显微镜(FESEM)、高分辨透射电子显微镜(HRTEM)、X射线光电子能谱(XPS)和傅里叶红外光谱仪(FTIR)等对材料形貌和组成进行表征。结果显示,具有ZIF-8多面体结构的碳均匀生长于活性炭表面,且颗粒尺寸均一,与活性炭复合后的C-ZIF-8尺寸减小。电化学结果显示,C-ZIF-8框架结构中吡啶氮与吡咯氮中的氮元素提高了C-ZIF-8@AC的比电容性能,其值约为181 F/g,远大于AC电容值;在电流密度为5 A/g、循环6000周次后,C-ZIF-8@AC的比电容依然能够保持99%,高于活性炭的保持率。

关键词 无机非金属材料C-ZIF-8@活性炭低温液相法比电容铅炭电池    
Abstract

A lead-carbon battery, which possesses simultaneously advantages of lead-acid battery and supercapacitor, can be obtained by adding a certain amount of carbon into the lead-acid battery. So, it is particularly critical to create a new type of carbon with ideal specific capacitance and stability in acid solutions. We tried to synthesize such a new carbon material namely C-ZIF-8@AC via a two step process i.e. low temperature liquid phase method and high temperature calcination. The materials were characterized by field emission scanning electron microscope (FESEM), high resolution transmission electron microscope (HRTEM), X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectrometer (FTIR) etc. The results show that the prepared C-ZIF-8@AC composed of carbon particles with polyhedral structure (ZIF-8 framework) grown uniformly on the surface of active carbon (AC) particles; After ZIF-8 has further been coupled with AC particles, the size of the formed C-ZIF-8 particles is reduced. Electrochemical results indicate that the elemental N in pyridine nitrogen and pyrropyrrole nitrogen of the C-ZIF-8 framework can enhance the specific capacitance of C-ZIF-8@AC, which is about 181 F/g, much higher than that of the simple AC. The C-ZIF-8@AC shows excellent cycling stability with 99% capacitance retention rate after 6000 cycles at the current density of 5 A/g, which is higher than that of the simple AC.

Key wordsinorganic non-metallic materials    C-zif-8@AC    low temperature liquid phase method    specific capacitance    lead-carbon battery
收稿日期: 2018-09-21     
ZTFLH:  TQ152  
基金资助:国家自然科学基金(11575084, 51402150);南京工程学院自然科学基金(CKJA201502, JCYJ201606)
作者简介: 张传香,女,1980年生,博士
图1  不同放大倍数下样品的FESEM图
图2  不同样品的HRTEM图,及C、N、O、Zn的面分布图
图3  不同样品的FTIR光谱及XPS光谱图
图4  C-ZIF-8@AC和C-AC的N2吸脱附等温回线及孔径分布曲线
图5  C-AC和C-ZIF-8@AC的CV及GCD曲线
图6  C-AC与C-ZIF-8@AC在不同电流密度下的比电容变化和交流阻抗图谱
图7  C-AC和C-ZIF-8@AC在电流密度为5 A/g时的循环性能
[1] ReddyA, GowdaS., ShaijumonM, et al. Hybrid nanostructures for energy storage applications [J]. Adv. Mater., 2012, 24: 5045
[2] SnydersaC, FergaE, DylT. The use of a polymat material to reduce the effects of sulphation damage occurring in negative electrodes due to the partial state of charge capacity cycling of lead acid batteries [J]. J. Power Sources, 2012, 200: 102
[3] HyuckL, HyeongK, MiS, et al. Fabrication of polypyrrole (PPy)/carbon nanotube (CNT) composite electrode on ceramic fabric for supercapacitor applications [J]. Electrochimica Acta, 2011, 56(22): 7460
[4] PetrB, KarelM, PetrK, et al. Study of the influence of carbon on the negative lead-acid battery electrodes [J]. J. Power Sources, 2011, 196: 3988
[5] ZhangH, CaoG P, YangY S, et al. Application of carbon materials in lead-acid batteries [J]. Chinese Journal of Power Sources, 2010, 7: 729
[5] 张 浩, 曹高萍, 杨裕生等. 炭材料在铅酸电池中的应用 [J]. 电源技术, 2010, 7: 729
[6] LamL, LoueyR. Ultrafine manganese dioxide nanowire network for high-performance supercapacitors [J]. J. Power Sources, 2011, 47: 1264
[7] FurukawaJ, TakadaT, MonmaD, et al. Further demonstration of the VRLA-type UltraBattery under medium-HEV duty and development of the flooded-type UltraBattery for micro-HEV applications [J]. J. Power Sources, 2010, 195: 1241
[8] WangH, XuZ, KohandehghanA, et al. Interconnected carbon nanosheets derived from hemp for ultrafast supercapacitors with high energy [J]. ACS Nano., 2013, 7: 5131
[9] WangD, LiF, LiuM, et al. 3D aperiodic hierarchical porous graphitic carbon material for high-rate electrochemical capacitive energy storage [J]. Angew. Chem., 2008, 47: 373
[10] ZhongJ, YangZ, MukherjeeR, et al. Carbon nanotube sponges as conductive networks for supercapacitor devices [J]. Nano Energy., 2013, 2: 1025
[11] ZhuS, LiJ, MaL, et al. Three-dimensional network of N-doped carbon ultrathin nanosheets with closely packed mesopores: controllable synthesis and application in electrochemical energy [J]. ACS Appl. Mater. Interfaces, 2016, 8: 11720
[12] ZhangL, YouT, ZhouT, et al. Interconnected hierarchical porous carbon from lignin-derived byproducts of bioethanol production for ultra-high performance supercapacitors [J]. ACS Appl. Mater. Interfaces, 2016, 8: 13918
[13] YuJ, LuW, PeiS, et al. Omnidirectionally stretchable high-performance supercapacitor based on isotropic buckled carbon nanotube films [J]. ACS Nano., 2016, 10: 5204
[14] OuyangA, CaoA, HuSet al. .Polymer-coated graphene aerogel beads and supercapacitor application [J]. ACS Appl. Mater. Interfaces., 2016, 8: 11179
[15] NieY Y, SunX G, CaiM Y, et al. Graphitized whisker-like carbon nanotubes as electrodes for supercapacitors [J]. Chinese Journal of Materials Research, 2016, 30(7): 538
[15] 聂艳艳, 孙晓刚, 蔡满园等. 石墨化改性晶须状碳纳米管及其电容特性 [J]. 材料研究学报, 2016, 30(7): 538)
[16] WuC, YangS, CaiJ, et al. Activated microporous carbon derived from almond shells for high energy density asymmetric supercapacitors [J]. ACS Appl. Mater. Interfaces, 2016, 8: 15288
[17] WangG, WangH, LuX, et al. Solid-state supercapacitor based on activated carbon cloths exhibits excellent rate capability [J]. Adv. Mater., 2014, 26: 2676
[18] YuanC, GaoB, ShenL, et al. Hierarchically structured carbon-based composites: design, synthesis and their application in electrochemical capacitorsv [J]. Nanoscale., 2011, 3: 529
[19] JamesS. Metal-organic frameworks [J]. Chemical Society Reviews, 2003, 32(5): 276
[20] RowsellJ, SpencerE, EckertJ, et al. Gas adsorption sites in a large-pore metal-organic framework [J]. Science, 2005, 309(5739): 1350
[21] LuW, JiangL, FengX, et al. Three-dimensional lanthanide anionic metal-organic frameworks with tunable luminescent properties induced by cation exchange [J]. Inorganic Chemistry, 2009, 48(15): 6997
[22] FarrussengD, AguadoS, PinelC. Metal-organic frameworks: Opportunities for catalysis [J]. Angewandte Chemie International Edition, 2009, 48(41): 7502
[23] WangY, WuY, ChenB, et al. ZIF-8@MWCNT-derived carbon composite as electrode of high performance for supercapacitor [J]. Electrochimica Acta, 2016, 213: 260
[24] KimD, WooD, CoskunA, et al. Graphene/ZIF-8 composites with tunable hierarchical porosity and electrical conductivity [J]. J. Mater. Chem. A., 2016, 4: 7710
[25] ZhongH, ZhangX, ZhangY, et al. ZIF-8 derived gaphene-based nitrogen-doped porous carbon sheets as highly efficient and durable oxygen reduction electrocatalysts [J]. Angew. Chem. Int. Ed., 2014, 53: 14235
[26] ZhengF, YangY, ChenQ. High lithium anodic performance of highly nitrogen-doped porous carbon prepared from a metal-organic framework [J]. Nat. Commun., 2014, 5: 5261
[27] LeiZ, ZhaoM, DangL, et al. Structural evolution and electrocatalytic application of nitrogen-doped carbon shells synthesized by pyrolysis of near-monodisperse polyaniline nanospheres [J]. J. Mater. Chem., 2009, 19: 5985
[28] JiangM, ZhangJ, ZhuD. Hierarchically porous N-doped carbon derived from ZIF-8 nanocomposites for electrochemical applications [J]. Electrochimica Acta, 2016, 196: 699
[29] KhanZ, HakG, KimY, et al. Ultrahigh performance supercapacitors utilizing core-shell nanoarchitectures from a metal-organic framework-derived nanoporous carbon and a conducting polymer [J]. Chem. Sci., 2016, 7: 5704
[30] ZhangP, SunF, ShenZ, et al. ZIF-derived porous carbon: a promising supercapacitor electrode material [J]. J. Mater. Chem. A., 2014, 2: 12873
[31] LotaG, GrzybB, MachnikowskaH, et al. Effect of nitrogen in carbon electrode on the supercapacitor performance [J]. Chemical Physics Letters, 2005, 404: 53
[32] YuG, ZouX, WangA, et al. Generation of bimodal porosity via self-extra porogenes in nanoporous carbons for supercapacitor application [J]. J. Mater. Chem. A., 2014, 2: 15420
[33] XuZ, LiZ, TanX, et al. Electrochemical supercapacitor electrodes from sponge-like graphene nanoarchitectures with ultrahigh power density [J]. J. Phys. Chem. Lett., 2012, 3(20): 2928
[34] LeeJ, YoonS, HyeonT. Synthesis of a new mesoporous carbon and its application to electrochemical double-layer capacitors [J]. Chem. Commun., 1999, 2177
[35] WangY F, ZuoS L. Electrochemical properties of phosphorus-containing activated carbon electrodes on electrical double-layer capacitors [J]. Acta Physico-Chimica Sinica, 2016, 32(2): 481
[35] 王永芳, 左宋林. 含磷活性炭作为双电层电容器电极材料的电化学性能 [J]. 物理化学学报, 2016, 32(2): 481)
[36] BarbieriO, HahnM, HerzogA, et al. Capacitance limits of high surface area activated carbons for double layer capacitors [J]. Carbon, 2005, 43(6): 1303
[37] LuX, GuL, WangJ, et al. Bimetal-organic framework derived CoFe2O4/C porous hybrid nanorod arrays as high-performance electrocatalysts for oxygen evolution reaction [J]. Adv. Mater. 2017, 29: 1604437
[38] FengY Q, TangF L, LangJ W, et al. Facile approach to preparation of nitrogen-doped graphene and its supercapacitive performance [J]. J. Inorg. Mater., 2013, 6(28): 677
[39] Lu X LinJ, HuangZ, et al. Three-dimensional nickel Oxide@Carbon hollow hybrid networks with enhanced performance for electrochemical energy storage [J]. Electrochim Acta, 2015, 161: 236
[40] BaiW, TongH, GaoZ, et al. Preparation of ZnCo2O4 nanoflowers on a 3D carbon nanotube/nitrogen-doped graphene film and its electrochemical capacitance [J]. J. Mater. Chem. A., 2015, 3: 21891
[41] WangJ, DingB, XuY, et al. Crumpled nitrogen-doped graphene for supercapacitors with high gravimetric and volumetric performances [J]. ACS Appl. Mater. Interfaces, 2015, 7: 22284
[42] ZhuY, MuraliS, StollerM D, et al. Carbon-based supercapacitors produced by activation of graphen [J]. Science, 2011, 332(6037): 1537
[1] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[4] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[5] 李延伟, 罗康, 姚金环. Ni(OH)2 负极材料的十二烷基硫酸钠辅助制备及其储锂性能[J]. 材料研究学报, 2023, 37(6): 453-462.
[6] 余谟鑫, 张书海, 朱博文, 张晨, 王晓婷, 鲍佳敏, 邬翔. N掺杂生物炭的制备及其对Co2+ 的吸附性能[J]. 材料研究学报, 2023, 37(4): 291-300.
[7] 朱明星, 戴中华. SrSc0.5Nb0.5O3 改性BNT基无铅陶瓷的储能特性研究[J]. 材料研究学报, 2023, 37(3): 228-234.
[8] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[9] 周毅, 涂强, 米忠华. 制备方法对磷酸盐微晶玻璃结构和性能的影响[J]. 材料研究学报, 2023, 37(10): 739-746.
[10] 谢锋, 郭建峰, 王海涛, 常娜. ZnO/CdS/Ag复合光催化剂的制备及其催化和抗菌性能[J]. 材料研究学报, 2023, 37(1): 10-20.
[11] 余超, 邢广超, 吴郑敏, 董博, 丁军, 邸敬慧, 祝洪喜, 邓承继. 亚微米Al2O3 对重结晶碳化硅的作用机制[J]. 材料研究学报, 2022, 36(9): 679-686.
[12] 方向明, 任帅, 容萍, 刘烁, 高世勇. 自供能Ag/SnSe纳米管红外探测器的制备和性能研究[J]. 材料研究学报, 2022, 36(8): 591-596.
[13] 李福禄, 韩春淼, 高嘉望, 蒋健, 许卉, 李冰. 氧化石墨烯的变温发光[J]. 材料研究学报, 2022, 36(8): 597-601.
[14] 朱晓东, 夏杨雯, 喻强, 杨代雄, 何莉莉, 冯威. Cu掺杂金红石型TiO2 的制备及其光催化性能[J]. 材料研究学报, 2022, 36(8): 635-640.
[15] 熊庭辉, 蔡文汉, 苗雨, 陈晨龙. ZnO纳米棒阵列和薄膜的同步外延生长及其光电化学性能[J]. 材料研究学报, 2022, 36(7): 481-488.