Please wait a minute...
材料研究学报  2019, Vol. 33 Issue (5): 338-344    DOI: 10.11901/1005.3093.2018.556
  研究论文 本期目录 | 过刊浏览 |
烧结温度对TC4合金的微观结构和力学性能的影响
杨军1,2,张家敏1,2(),马文瑾3,杜立辉1,2,易健宏1,2,甘国友1,2,3,游昕1,2,李凤仙1,2
1. 昆明理工大学材料科学与工程学院 昆明 650093
2. 云南省新材料制备与加工重点实验室 昆明 650031
3. 莫纳什大学材料科学与工程学院 墨尔本 3800 澳大利亚
Effect of Sintering Temperature on Microstructure and Mechanical Properties of TC4 Alloy
Jun YANG1,2,Jiamin ZHANG1,2(),Wenjin MA3,Lihui DU1,2,Jianhong YI1,2,Guoyou GAN1,2,3,Xin YOU1,2,Fengxian LI1,2
1. Faculty of Material Science and Engineering, Kunming University of Science and Technology, Kunming 650093,China
2. Key Laboratory of Advanced Materials of Yunnan Province, Kunming 650031,China
3. Faculty of Material Science and Engineering, Monash University, Melbourne 3800, Australia
引用本文:

杨军,张家敏,马文瑾,杜立辉,易健宏,甘国友,游昕,李凤仙. 烧结温度对TC4合金的微观结构和力学性能的影响[J]. 材料研究学报, 2019, 33(5): 338-344.
Jun YANG, Jiamin ZHANG, Wenjin MA, Lihui DU, Jianhong YI, Guoyou GAN, Xin YOU, Fengxian LI. Effect of Sintering Temperature on Microstructure and Mechanical Properties of TC4 Alloy[J]. Chinese Journal of Materials Research, 2019, 33(5): 338-344.

全文: PDF(10889 KB)   HTML
摘要: 

将TiH2、Al-V粉末压制成型后进行真空烧结,制备出Ti6Al4V(TC4)合金,使用XRD、金相和SEM断口形貌观测以及力学性能测试等手段对其表征,研究了烧结温度对合金力学性能的影响。结果表明:烧结样品由密排六方α-Ti和体心立方β-Ti双相组成,其形貌呈等轴、网篮或板条(片状、针状)状,随着烧结温度的提高和保温时间的延长等轴组织减少,片状组织和针状组织增加且其组织粗化,在1150℃烧结的样品具有较好网篮结构组织;用该方法可制备相对密度为96.9%~99.6%、抗拉强度为719.3~914.1 MPa、延伸率为6.2%~9.4%、硬度为313.2~364.8HV的TC4合金试样;在1150℃保温1.5 h的样品性能较好,其抗拉强度最高(914.1 MPa),对应的延伸率和硬度分别为7.6%和355.5HV;用纯TiH2粉末烧结样品的断口呈韧性断裂;加入合金元素的样品其断口逐渐由韧性断口变为韧性和脆性混合的断口,其强度提高、延伸率下降。

关键词 金属材料粉末冶金钛合金TiH2物相与形貌力学性能    
Abstract

Ti6Al4V (TC4) alloy was prepared by vacuum sintering of the pressed powder mixture of TiH2, Ti and Al-V alloy. The effect of sintering temperature on the phase constituents, microstructure , density and mechanical properties of the alloy was characterised by XRD, metallography, mechanical tests and SEM fracture morphology. The result shows that the prepared alloy composed of hexagonal α-Ti phase and body-centered cubic β-Ti phase. The alloy presents a microstructure with equiaxed grains, as well as mesh basket or lath (lamellar and acicular) like structures. With the increase of sintering temperature and holding time, the equiaxed grains gradually disappeared, while the amount of lamellar- and acicular-like structures increase and which then were coarsened . The alloy sintered at 1150℃ presents a microstructure with better mesh basket like structures. TC4 Ti-alloyswith relative density of 96.9%~99.6%, tensile strength of 719.3~914.1 MPa, elongation at break of 6.2%~-9.4% and hardness of 313.2~364.8 HV can be obtained by the method. Among others, the alloy with the best mechanical property could be acquired by sintering at 1150℃, which shows tensile strength of 914.1MPa, elongation at break of 7.6% and hardness of 355.5 HV respectively. The fracture morphology was mainly ductile for the alloy prepared by sintering of powder mixture of Ti and pure TiH2 , and it gradually turns into brittle-tough mixed fracture with the increasing amount of Al-V alloy powder was added, correspondingly, the tensile strength of the prepared alloys increased but the elongation at break decreased.

Key wordsmetallic materials    powder metallurgy titanium alloy    TiH2    phase and morphology    mechanical property
收稿日期: 2018-09-13     
ZTFLH:  TG146.2+3  
基金资助:国家自然科学基金(51464027)
作者简介: 杨 军,男,1993年生,硕士生
图1  烧结样品和拉伸试样
图2  在不同温度烧结不同时间的试样的XRD衍射图
图3  TC4试样的金相组织

Sintering

temperature

1.5 h2.0 h2.5 h
Before sintering After sinteringBefore sintering After sinteringBefore sintering After sintering
1100℃62.7396.9158.6598.6162.2399.06
1150℃58.9697.4258.7898.7762.2999.19
1200℃65.0399.0260.1799.0260.4899.58
表1  试样烧结前后的相对密度
Sintering conditionsRm/MPaRP0.2/MPaδ/%HV
1100℃-1.5 h848.1792.47.1313.2
1150℃-1.5 h914.1861.87.6355.5
1200℃-1.5 h719.3663.66.2334.9
1100℃-2 h902.4852.76.2345.8
1150℃-2 h853.2791.38.2346.6
1200℃-2 h769.0696.28.7337.3
1100℃-2.5 h894.0846.38.1364.8
1150℃-2.5 h909.1854.09.4353.3
1200℃-2.5 h820.2764.09.1363.7
表2  TiH2-6Al-4V试样的力学性能
SamplesRm/MPaRP0.2/MPaδ/%HV
TiH2562.9486.528.1228.5
TiH2-3Al-2V839.1775.121.4318.2
TiH2-6Al-4V914.1861.87.6355.5
Ti-6Al-4V937.2869.810.9376.8
表3  不同成分试样的拉伸性能
图4  在1150℃保温1.5 h试样的拉伸断口形貌
[1] HaaseC, LapovokR, NgH P, et al. Production of Ti-6Al-4V billet through compaction of blended elemental powders by equal-channel angular pressing [J]. Mater. Sci. Eng. A, 2012, 550(550): 263
[2] LutfullinR Y. Advanced technologies of processing titanium alloys and their applications in industry [J]. Rev. Adv. Mater. Sci., 2011, 26(1): 68
[3] XiB, JuJ H, WangJ, et al. Microstructure evolution of TA15 alloy during superplastic deformation [J]. J. Chin. Rare Met., 2014, 38(2): 1
[4] ZhaoY, HeY H, JiangW, et al. Research on preparation of Ti6Al4V alloy using powder metallurgy [J]. PM. Technol., 2009, 27(02): 108
[4] 赵 瑶, 贺跃辉, 江 垚等. 粉末冶金Ti6Al4V合金的研究 [J]. 粉末冶金技术, 2009, 27(2): 108)
[5] ZhaoW J, DingH, CaoF R, et al. Mechanical behavior of Ti6Al4V alloy during low-temperature superplastic deformation [J]. Chin. J. Mater. Res., 2008, 22(3): 269
[5] 赵文娟, 丁 桦, 曹富荣等. Ti6Al4V合金的低温超塑性拉伸变形行为 [J]. 材料研究学报, 2008, 22(3): 269)
[6] ShangQ L, LiuJ, ZhangW, et al. The performance study on Ti-6Al-4V sintered by titanium hydride powder [J]. Yunnan Metall., 2015, 44(1): 57
[7] WangH T, LeflerM, FangZ Z, et al. Titanium and titanium alloy via sintering of TiH2 [J]. Key Eng. Mater., 2010, 436(436): 157
[8] MoxsonV, SenkovO N, FroesF H. Innovations in titanium powder processing [J]. JOM., 2000, 52(5): 24
[9] ZhangJ M, YiJ H, LeiT, et al. Dehydrogenation and sintering process of titanium hydride for manufacture titanium and titanium alloy [J]. Sci. Technol. Rev., 2012, 30(1): 65
[9] 张家敏, 易健宏, 雷 霆等. TiH2粉末制备钛合金的烧结脱氢规律及工艺 [J]. 科技导报, 2012, 30(1): 65)
[10] SunY, LuoG, ZhangJ, et al. Phase transition, microstructure and mechanical properties of TC4 titanium alloy prepared by plasma activated sintering [J]. J. Alloys Compd., 2018, 741
[11] HongY, QuT, ShenH S, et al. Titanium production through hydrogenation and dehydrogenation process [J]. J. Chin. Rare Met., 2007, 31(3): 311
[11] 洪 艳, 曲 涛, 沈化森等. 氢化脱氢法制备钛粉工艺研究 [J]. 稀有金属, 2007, 31(3): 311)
[12] IvasishinO M, SavvakinD G, FroesF H, et al. Synthesis of the Ti-6Al-4V alloy with low residual porosity by a powder metallurgy method [J]. Powder Metall. Met. Ceram., 2002, 41(7/8): 382
[13] YuL, LiY M,DengZ Y, et al. Preparation of Ti-6Al-4V alloy by powder metallurgy using titanium hydride powder [J]. Met. Mater. Metall. Eng., 2004, (5): 17
[13] 喻 岚, 李益民, 邓忠勇等. 采用氢化钛粉制备Ti-6Al-4V合金 [J]. 金属材料与冶金工程, 2004, 32(5): 17)
[14] HuZ Y, ChengX W, ZhangZ H, et al. The influence of defect structures on the mechanical properties of Ti-6Al-4V alloys deformed by high-pressure torsion at ambient temperature [J]. J. Mater. Sci. Eng., 2017, 684: 1
[15] MurrL E, GaytanS M, et al. Metal fabrication by additive manufacturing using laser and electron beam melting technologies [J]. J. Mater. Sci. Technol., 2012, 28(1): 1
[16] ZouL M, MaoX H, LiuX, et al. Effect of particle size on microstructure and mechanical properties of Ti-6Al-4V alloy prepared by hot press [J]. Sci. Eng. Powd. Metal. Mater., 2016, 21(2): 217
[16] 邹黎明, 毛新华, 刘 辛等. 粉末粒度对热压Ti-6Al-4V合金微观组织和力学性能的影响 [J]. 粉末冶金材料科学与工程, 2016, 21(2): 217)
[17] ZhangT J. Electron microscopic study of phase transition in titanium alloys(II)-Crystal structure of two basic phases of titanium and its alloys and lattice defects possible to be produced by them [J]. Rare Met. Mater. Eng., 1989, (3): 57
[17] 张廷杰. 钛合金相变的电子显微镜研究(Ⅱ)——钛及其合金的两个基本相的结晶结构和它们可能产生的晶格缺陷 [J]. 稀有金属材料与工程, 1989, (3): 57)
[18] LouG T, SunJ K, YangX D, et al. Effect of Al and Mo on mechanical properties of cast titanium alloy [J]. Dev. Appl. Mater., 2003, 18(4): 32
[18] 娄贯涛, 孙建科, 杨学东等. Al、Mo含量对铸造钛合金力学性能的影响 [J]. 材料开发与应用, 2003, 18(4): 32)
[19] LiuY, TangH P. Powder Metallurgical Titanium Base Structural Materials [M]. Changsha: Central South University Press, 2012
[19] 刘 咏, 汤慧萍. 粉末冶金钛基结构材料 [M]. 长沙: 中南大学出版社, 2012
[20] ShaoH, ZhaoY Q, GeP, et al. Effects of different microstructure types on the strength and plasticity of TC21 alloy [J]. Rare Met. Mater. Eng., 2013, 42(4): 845
[20] 邵 晖, 赵永庆, 葛 鹏等. 不同组织类型对TC21合金强-塑性的影响 [J]. 稀有金属材料与工程, 2013, 42(4): 845)
[21] BaiX F, ZhaoY Q, ZhengC P, et al. Research on mechanical properties of titanium alloy with different microstructures [J]. Pro. Titanium Indu., 2011, 28(3): 26
[21] 白新房, 赵永庆, 郑翠萍等. 不同组织形态TC4钛合金力学性能研究 [J]. 钛工业进展, 2011, 28(3): 26)
[1] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[3] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[4] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[5] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[6] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[7] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[8] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[9] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[10] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[11] 陈晶晶, 占慧敏, 吴昊, 朱乔粼, 周丹, 李柯. 纳米晶CoNiCrFeMn高熵合金的拉伸力学性能[J]. 材料研究学报, 2023, 37(8): 614-624.
[12] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[13] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[14] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[15] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.