Please wait a minute...
材料研究学报  2019, Vol. 33 Issue (5): 345-351    DOI: 10.11901/1005.3093.2018.540
  研究论文 本期目录 | 过刊浏览 |
粉末冶金多孔高氮奥氏体不锈钢的制备及性能
胡玲1,李烈军1(),彭翰林2,倪东惠1,陈松军1,张伟鹏1
1. 华南理工大学 国家金属材料近净成形工程技术研究中心 广州 510640
2. 华中科技大学 材料成形与模具技术国家重点实验室 武汉 430074
Fabrication and Properties of Powder Metallurgical Porous High Nitrogen Austenitic Stainless Steel
Ling HU1,Liejun LI1(),Hanlin PENG2,Tungwai NGAI1,Songjun CHEN1,Weipeng ZHANG1
1. National Engineering Research Center of Near-net-shape Forming Technology for Metallic Materials, South China University of Technology, Guangzhou 510640, China
2. State Key Laboratory of Material Processing and Die & Mould Technology, Huazhong University of Science and Technology, Wuhan 430074, China
引用本文:

胡玲,李烈军,彭翰林,倪东惠,陈松军,张伟鹏. 粉末冶金多孔高氮奥氏体不锈钢的制备及性能[J]. 材料研究学报, 2019, 33(5): 345-351.
Ling HU, Liejun LI, Hanlin PENG, Tungwai NGAI, Songjun CHEN, Weipeng ZHANG. Fabrication and Properties of Powder Metallurgical Porous High Nitrogen Austenitic Stainless Steel[J]. Chinese Journal of Materials Research, 2019, 33(5): 345-351.

全文: PDF(10542 KB)   HTML
摘要: 

采用粉末冶金方法制备了多孔高氮奥氏体不锈钢并研究其力学性能和耐腐蚀性能。结果表明,高温气固渗氮能促进双相不锈钢向奥氏体不锈钢的转变,在其显微组织中出现了细条状和颗粒状CrN相析出物。随着造孔剂含量的提高孔隙率随之提高,而力学性能和耐腐蚀性能降低。与普通的多孔不锈钢相比,这种多孔高氮奥氏体不锈钢的力学性能更加优越,源于N的固溶强化和CrN等析出物的强化机制。随着孔隙率的提高多孔高氮奥氏体不锈钢的腐蚀倾向和腐蚀速率逐渐增大,造孔剂含量(质量分数)为10%的试样具有最佳的耐腐蚀性能。提高烧结温度有利于烧结块体的致密化,使腐蚀速率明显下降。

关键词 金属材料高氮奥氏体不锈钢粉末冶金多孔力学性能耐腐蚀性能    
Abstract

Porous high-N austenitic stainless steel was fabricated via powder metallurgy and its microstructure and properties were investigated. Results show that high temperature nitridation process promotes the phase transformation of the stainless steel from duplex phase to austenitic phase. Precipitations with different morphologies were observed in the microstructure. XRD results and TEM results identified that both the two precipitates with different morphologies are all CrN phase. With the increasing pore-forming agent the porosity of the prepared alloy increased, which could result in degradation of mechanical properties and corrosion resistance. The superior mechanical property of porous alloys fabricated by this method might be ascribed to the effect of solid solution strengthening of the solute N and precipitation strengthening of nitrides. With the increasing porosity, both of the corrosion tendency and corrosion rate increased for the as-fabricated porous high-N austenitic stainless steel. Among others, the alloy with 10% (mass fraction) pore former exhibits the best corrosion resistance. Besides, the increase of sintering temperature can enhance the densification of the as-prepared alloy, thus improves its corrosion resistance.

Key wordsmetallic materials    high nitrogen austenitic stainless steel    powder metallurgy    porous    mechanical properties    corrosion resistance
收稿日期: 2018-09-06     
ZTFLH:  TG142  
基金资助:国家自然科学基金(51674124)
作者简介: 胡 玲,女,1991年生,博士生
图1  原始粉末的SEM形貌和粉末颗粒的直径分布
Sample codes

Sintering

temperature /℃

Content of

space holder

/%, mass fraction

S1N1200-10-374120010
S2N1200-20-374120020
S3N1200-30-374120030
S4N1200-40-374120040
S5N1120-10-374112010
S6N1120-20-374112020
S7N1120-30-374112030
S8N1120-40-374112040
S9N1250-30-374125030
表 1  样品编码以及详细的工艺参数
图2  烧结温度为1200℃的三种不同孔隙率试样的SEM显微组织
图3  多孔高氮奥氏体不锈钢的XRD图谱和Fe-17.5Cr-10.85Mn-3.4Mo-xN材料体系的Thermo-Calc计算相图
图4  试样N1120-30-374中颗粒状析出物的形貌以及选区电子衍射图谱、TEM-EDS能谱图、细长条状析出物的形貌以及选区电子衍射图谱和TEM-EDS能谱图
Sample codesPorosity/%

Compressive strength

/MPa

Yield strength

/MPa

N1200-10-37426.31259.3516.7
N1200-20-37437.8516.0249.7
N1200-30-37445.0377.0220.4
N1200-40-37455.85244.2135.0
N1120-30-37451.8151.1129.9
N1250-30-37442.6383.2224.8
表2  各试样的孔隙率和力学性能
图5  孔隙率和烧结温度对多孔高氮奥氏体不锈钢在浓度为0.9%的NaCl溶液中极化曲线的影响
Sample codesEcorr/VIcorr/mA·cm-2Rp/Ω·cm2ba/V·dec-1bc/V·dec-1Corrosion rate/mm·a-1
N1120-10-374-0.7570.0013742.00.1420.1480.007
N1120-20-374-0.8510.153130.40.3740.3030.277
N1120-30-374-0.8860.26293.40.2090.1692.211
N1120-40-374-0.9850.497105.50.1850.1694.817
N1200-30-374-0.8320.233115.00.1960.1741.641
N1250-30-374-0.8690.067209.40.0860.0870.416
表3  多孔高氮不锈钢在0.9%的NaCl溶液中极化后的电化学参数
[1] SulongM A, VesenjakM, BelovaI V, et al. Compressive properties of advanced pore morphology (APM) foam elements [J]. Mater. Sci. Eng., A 2014, 607: 498
[2] KashefS, AsgariA, HilditchT B, et al. Fracture mechanics of stainless steel foams [J]. Mater. Sci. Eng. A, 2013, 578: 115
[3] Simmons J W, Mechanical properties of isothermally aged high-nitrogen stainless steel [J]. Metall. Mater. Trans. A, 1995, 26A: 2085
[4] YangK, RenY B, Nickel-free stainless steel for medical applications [J]. Sci. Technol. Adv. Mater., 2010, 11: 1
[5] ZhaoH C, RenY B, LiuW P, et al. Effect of cold deformation on friction wear property of 00Cr18Mn15Mo2N0.9 high-nitrogen nickel-free stainless steel [J]. Chin. J. Mater. Res., 2016, 30(3): 171
[5] 赵浩川, 任伊宾, 刘文朋等. 冷变形对00Cr18Mn15Mo2N0.9高氮无镍不锈钢摩擦磨损性能的影响[J]. 材料研究学报, 2016, 30(3): 171)
[6] AlvarezK, SatoK, HyunS K, et al. Fabrication and properties of Lotus-type porous nickel-free stainless steel for biomedical applications [J]. Mater. Sci. Eng. C, 2018, 28(1): 44
[7] LiY H, YangC, KangL M, et al. Biomedical porous TiNbZrFe alloys fabricated using NH4HCO3 as pore forming agent through powder metallurgy route [J]. Powder Metall., 2015, 58(3): 228
[8] MondalD P, JainH, DasS, et al. Stainless steel foams made through powder metallurgy route using NH4HCO3 as space holder [J]. Mater. Des., 2015, 88: 430
[9] CuiD W, QuX H, GuoP, eral . Sintering optimisation and solution annealing of high nitrogen nickel free austenitic stainless steels prepared by PIM [J]. Powder Metall., 2013, 53(1): 91
[10] OhI H, NomuraN, MasahashiN, et al. Mechanical properties of porous titanium compacts prepared by powder sintering [J]. Scr. Mater., 2003, 49(12): 1197
[11] IdeT, TaneM, IkedaT, et al. Compressive properties of lotus-type porous stainless steel [J]. J. Mater. Res., 2006, 21(1): 185
[12] HuL, NgaiT, PengH L, et al. Microstructure and properties of porous high-N Ni-free austenitic stainless steel fabricated by powder metallurgical route [J]. Materials, 2018, 11: 1058
[13] PengH L, HuL, NgaiT, et al. Effects of austenitizing temperature on microstructure and mechanical property of a 4-GPa-grade PM high-speed steel [J]. Mater. Sci. Eng. A, 2018, 719: 21
[14] ChangS H, ChenJ Z, HsiaoS H, et al. Nanohardness, corrosion and protein adsorption properties of CuAlO2 films deposited on 316L stainless steel for biomedical applications [J]. Appl. Surf. Sci., 2014, 289: 455
[15] Garcia-CabezonC, BlancoY, Rodriguez-MendezM L, et al. Characterization of porous nickel-free austenitic stainless steel prepared by mechanical alloying [J]. J. Alloys Compd., 2017, 716: 46
[1] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[3] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[4] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[5] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[6] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[7] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[8] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[9] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[10] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[11] 陈晶晶, 占慧敏, 吴昊, 朱乔粼, 周丹, 李柯. 纳米晶CoNiCrFeMn高熵合金的拉伸力学性能[J]. 材料研究学报, 2023, 37(8): 614-624.
[12] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[13] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[14] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[15] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.