Please wait a minute...
材料研究学报  2019, Vol. 33 Issue (3): 191-198    DOI: 10.11901/1005.3093.2018.522
  本期目录 | 过刊浏览 |
终轧温度对Ti-V-Mo复合微合金钢组织演变和硬度的影响
张可1(),赵时雨1,隋凤利1,李昭东2,叶晓瑜3,孙新军2,黄贞益1,雍岐龙2
1. 安徽工业大学冶金工程学院 马鞍山 243032
2. 钢铁研究总院工程用钢所 北京 100081
3. 钒钛资源综合利用国家重点实验室(攀钢集团有限公司) 攀枝花 617000
Effect of Finish Rolling Temperature on Microstructure Evolution and Hardness of Ti-V-Mo Complex Microalloyed Steel
Ke ZHANG1(),Shiyu ZHAO1,Fengli SUI1,Zhaodong LI2,Xiaoyu YE3,Xinjun SUN2,Zhenyi HUANG1,Qilong YONG2
1. School of Metallurgical Engineering, Anhui University of Technology, Maanshan 243002, China
2. Institute of Structural Steels, Central Iron and Steel Research Institute, Beijing 100081, China
3. State Key Laboratory of Vanadium and Titanium Resources Comprehensive Utilization, Panzhihua Group Co., Ltd., Panzhihua 617000, China
引用本文:

张可,赵时雨,隋凤利,李昭东,叶晓瑜,孙新军,黄贞益,雍岐龙. 终轧温度对Ti-V-Mo复合微合金钢组织演变和硬度的影响[J]. 材料研究学报, 2019, 33(3): 191-198.
Ke ZHANG, Shiyu ZHAO, Fengli SUI, Zhaodong LI, Xiaoyu YE, Xinjun SUN, Zhenyi HUANG, Qilong YONG. Effect of Finish Rolling Temperature on Microstructure Evolution and Hardness of Ti-V-Mo Complex Microalloyed Steel[J]. Chinese Journal of Materials Research, 2019, 33(3): 191-198.

全文: PDF(9526 KB)   HTML
摘要: 

采用Gleeble3800热模拟试验机、OM、EBSD、TEM及Vickers硬度计等研究终轧温度对Ti-V-Mo复合微合金钢的组织转变、析出相和硬度的影响,并阐明了组织演变和硬度变化的原因。结果表明,不同终轧温度的Ti-V-Mo钢其组织均为多边形铁素体;随着终轧温度由1000℃降低到800℃,Ti-V-Mo钢的硬度由400HV提高到427HV;铁素体晶粒的平均尺寸由3.44 μm减小到3.05 μm;(Ti, V, Mo)C粒子的析出数量增加,其平均尺寸由8.38 nm减小到6.25 nm。随着终轧温度的降低,铁素体平均晶粒尺寸的减小和纳米级(Ti, V, Mo)C粒子的增多及细化是硬度增大的主要因素。在980℃以下,降低终轧温度(Ti, V, Mo)C在奥氏体中的形核率不断减小,使得其在铁素体中析出的10 nm以下的(Ti, V, Mo)C粒子不断增多,促进了硬度的提高。

关键词 金属材料Ti-V-Mo复合微合金钢终轧温度硬度铁素体(Ti,V,Mo)C    
Abstract

The effect of finish rolling temperature on microstructure, precipitates, hardness of Ti-V-Mo microalloyed steel was investigated by means of Gleeble3800 thermal-mechanical simulator, OM, SEM, TEM and Vickers-hardness tester. The results show that the microstructures of Ti-V-Mo microalloyed steel, which was finish-rolled at different temperatures, consist of all polygonal ferrite, and the finish rolling temperature has a major impact on the precipitates and hardness. When the finish rolling temperature decreases from 1000oC to 800oC, the hardness increases from 400 HV to 427 HV. Meanwhile, the average grain size of ferrite in Ti-V-Mo microalloyed steel decreases gradually from 3.44 μm to 3.05 μm and the amount of (Ti, V, Mo)C particles increase monotonously, while their mean size reduces from 8.38 nm to 6.25 nm. The main factors responsible to the enhancement of hardness are the refinement of average ferrite grain size as well as the increasing amount and further refinement of nano-sized (Ti, V, Mo)C particles as the finish rolling temperature decreases. The nucleation rate of (Ti, V, Mo)C carbides in austenite decreased when the finish rolling temperature below 980oC, while more tiny particles precipitated from ferrite matrix, which promotes the increase of hardness.

Key wordsmetallic materials    Ti-V-Mo complex microalloyed steel    finish rolling temperature    hardness    ferrite    (Tim,V,Mo)C
收稿日期: 2018-08-27     
ZTFLH:  TG142.1  
基金资助:国家重点研发计划(2017YFB0305100);国家重点研发计划(2017YFB0304700);国家自然科学基金(1704008);国家自然科学基金(51574001);国家自然科学基金(1674004);钒钛资源综合利用国家重点实验室开放基金(8100009);安徽工业大学青年科研基金(QZ201603)
作者简介: 张 可,男,1983年生,博士
图1  Ti-V-Mo钢的热模拟工艺示意图
图2  Ti-V-Mo钢不同终轧温度下的OM像
图3  Ti-V-Mo钢中各相的含量随温度的变化
图4  不同终轧温度Ti-V-Mo钢的EBSD像
图5  不同终轧温度Ti-V-Mo钢的晶界取向差分布
图6  不同终轧温度试样的TEM像
图7  终轧温度不同的试样中(Ti, V, Mo)C的尺寸分布
图8  不同形变储能条件下(Ti, V, Mo)C在奥氏体中的形核率温度曲线[24]
图9  在800℃和1000℃终轧试样的TEM像
图10  不同终轧温度试样的硬度
[1] KimN J, YangA J, ThomasG. Effect of finish rolling temperature on the structure and properties of directly quenched Nb containing low carbon steel [J]. Metall. Trans. A., 1985, 16: 471
[2] HuiY J, PanH, LiuK, et al. Strengthening mechanism of 600 MPa grade Nb-Ti microalloyed high formability crossbeam steel [J]. Acta Metall. Sin., 2017, 53: 937
[2] (惠亚军, 潘 辉, 刘 锟等. 600 MPa级Nb-Ti微合金化高成形性元宝梁用钢的强化机制 [J]. 金属学报, 2017, 53: 937)
[3] CaoL C, XuH W, WangS S, et al. Effect of finish rolling temperature on microstructure and mechanical properties of hot rolled high strength steel for container [J]. Iron Steel, 2014, 49: 65
[3] (曹立潮, 余宏伟, 王世森等. 终轧温度对低合金铌钛贝氏体钢组织和性能的影响 [J]. 钢铁, 2014, 49: 65)
[4] WiskelJ B, IveyD G, HeneinH. The effects of finish rolling temperature and cooling interrupt conditions on precipitation in microalloyed steels using small angle neutron scattering [J]. Metall. Mater. Trans., 2008, 39B: 116
[5] SaastamoinenA, KaijalainenA, PorterD, et al. The effect of finish rolling temperature and tempering on the microstructure, mechanical properties and dislocation density of direct-quenched steel [J]. Mater. Charact., 2018, 139: 1
[6] ZhangK, WangH, SunX J, et al. Precipitation behavior and microstructural evolution of ferritic Ti-V-Mo complex microalloyed steel [J]. Acta Metall. Sin. (Engl. Lett.), 2018: 31(9): 997
[7] ZhangK, YongQ L, SunX J, et al. Effect of coiling temperature on micro-structure and mechanical properties of Ti-V-Mo complex microalloyed ultra-high strength steel [J]. Acta Metall. Sin., 2016, 52: 529
[7] (张 可, 雍岐龙, 孙新军等. 卷取温度对Ti-V-Mo复合微合金化超高强度钢组织及力学性能的影响 [J]. 金属学报, 2016, 52: 529)
[8] ChenC Y, ChenC C, YangJ R. Microstructure characterization of nanometer carbides heterogeneous precipitation in Ti-Nb and Ti-Nb-Mo steel [J]. Mater. Charact., 2014, 88: 69
[9] PuF Z, WangX M, ChenL, et al. Performance of nanosized carbides precipitation and microstructure evolution in tempering process of Ti-Nb-Mo microalloyed steel [J]. T. Mater. Heat. Treat., 2015, 36: 96
[9] (卜凡征, 王学敏, 陈 琳等. Ti-Nb-Mo微合金钢回火过程中纳米碳化物的析出行为及组织演变 [J]. 材料热处理学报, 2015, 36: 96)
[10] ShaQ Y, LiG Y, QiaoL F, et al. Effect of cooling rate and coiling temperature on precipitate in ferrite of a Nb-V-Ti microalloyed strip steel [J]. J. Iron Steel Res., Int., 2007, 14: 316
[11] YiH L, DuL X, WangG D, et al. Development of Nb-V-Ti hot-rolled high strength steel with fine ferrite and precipitation streng-thening [J]. J. Iron Steel Res. Int., 2009, 16: 72
[12] MaoX P. Titanium Microalloyed Steel [M]. Beijing: Metallurgical Industry Press, 2016: 18
[12] (毛新平. 钛微合金钢 [M]. 北京: 冶金工业出版社, 2016: 18)
[13] ZhangK, LiZ D, SuiF L, et al. Effect of cooling rate on microstructure evolution and mechanical properties of Ti-V-Mo complex microalloyed steel [J]. Acta Metall. Sin., 2018, 54: 31
[13] (张 可, 李昭东, 隋凤利等. 冷却速率对Ti-V-Mo复合微合金钢组织转变及力学性能的影响 [J]. 金属学报, 2018, 54: 31)
[14] Bakkalo?luA. Effect of processing parameters on the microstructure and properties of an Nb microalloyed steel [J]. Mater. Lett., 2002, 56: 200
[15] PanJ S, TongJ M, TianM B. Fundamentals of Material Science [M]. Beijing: Tsinghua University Press, 2011, 660
[15] (潘金生, 仝健民, 田民波. 材料科学基础 [M]. 北京: 清华大学出版社, 2011, 660)
[16] LeeW B, HongS G, ParkC G, et al. Influence of Mo on precipitation hardening in hot rolled HSLA steels containing Nb [J]. Scr. Mater., 2000, 43, 319
[17] EfronL I, MorozovY D, Goli-OgluE A. Influence of rolling temperature on the austenite structure and properties of low-carbon microalloyed steel [J]. Steel Transl, 2012, 42: 456
[18] OkamotoR, BorgenstamA, ?grenJ. Interphase precipitation in niobium-microalloyed steels [J]. Acta. Mater., 2010, 58: 4783
[19] ChenC Y, ChenC C, YangJ R. Microstructure characterization of nanometer carbides heterogeneous precipitation in Ti-Nb and Ti-Nb-Mo steel [J]. Mater. Charact., 2014, 88: 69
[20] TorganchukV, BelyakovA, KaibyshevR. Effect of rolling temperature on microstructure and mechanical properties of 18%Mn TWIP/TRIP steels [J]. Mater. Sci. Eng., 2017, 708: 110
[21] LuJ X, WangG D. Study on the performance of carbonitride precipitation in Nb-Ti microalloyed steels [J]. Iron Steel, 2005, 40: 69
[22] XuW C, SunF Y. The fine structure of Nb and V precipitates in Nb-V steel [J]. Acta Metall. Sin., 1983, 19: 29
[22] (徐温崇, 孙福玉. Nb-V微合金钢中Nb与V析出相的精细结构 [J]. 金属学报, 1983, 19: 29)
[23] LiW Y, LiuK, HuiY J. Effect of finish rolling temperature on microstructure and mechanical properties of hot rolled high strength for container [J]. J. Iron Steel Res., 2015, 27: 64
[23] (李文远, 刘 锟, 惠亚军等. 终轧温度对热轧高强集装箱用钢组织及性能的影响 [J]. 钢铁研究学报, 2015, 27: 64)
[24] ZhangK. Study on microstructure tailoring and strengthening mechanisms of Ti-V-Mo complex microalloyed high strength steel [D]. Kunming: Kunming University of Science and Technology, 2016
[24] (张 可. Ti-V-Mo复合微合金化高强钢组织调控与强化机理研究 [D]. 昆明: 昆明理工大学, 2016)
[25] YangC F, ZhangY Q, WangR Z. Metallurgical Principle and Application of Vanadium Steel [M]. Beijing: Metallurgical Industry Press, 2012
[25] (杨才福, 张永权, 王瑞珍. 钒钢冶金原理与应用 [M]. 北京: 冶金工业出版社, 2012)
[26] BrackeL, XuW. Waterschoot T. Effect of finish rolling temperature on direct quenched low alloy martensite properties [J]. Mater. Today: Proceedings, 2015, 2: S659
[27] GuoW M, WangZ C, ShengL, et al. Effects of finish rolling temperature on microstructure and mechanical properties of ferritic-rolled P-added high strength interstitial-free steel sheets [J]. J. Iron Steel Res. Int., 2011, 18: 42
[28] SunF Y, XuW C. Calculation of yield strength of Nb-V microalloy steel controlled-rolled into dual-phase γ+α [J]. Acta Metall. Sin., 1986, 22(1): 115
[28] (孙福玉, 徐温崇. Nb-V 微合金钢在(γ+α)双相区的控轧及有关强化效应的估算 [J]. 金属学报, 1986, 22(1): 115)
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] 刘天福, 张滨, 张均锋, 徐强, 宋竹满, 张广平. 缺口应力集中系数对TC4 ELI合金低周疲劳性能的影响[J]. 材料研究学报, 2023, 37(7): 511-522.