Please wait a minute...
材料研究学报  2019, Vol. 33 Issue (2): 87-94    DOI: 10.11901/1005.3093.2018.510
  本期目录 | 过刊浏览 |
45钢表面Ni/WC复合熔覆层的形成机制
杨贵荣1(),高大文1,宋文明2,张玉福2,马颖1
1. 兰州理工大学 省部共建有色金属先进加工与再利用国家重点实验室 兰州 730050
2. 甘肃蓝科高新石化装备股份有限公司 兰州 730070
Formation Mechanism of Ni/WC Composite Coatings on Carbon Steel
Guirong YANG1(),Dawen GAO1,Wenming SONG2,Yufu ZHANG2,Ying MA1
1. State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Lanzhou University of Technology, Lanzhou 730050, China
2. Lanpec Technologies Co. Ltd., Lanzhou 730070, China
引用本文:

杨贵荣,高大文,宋文明,张玉福,马颖. 45钢表面Ni/WC复合熔覆层的形成机制[J]. 材料研究学报, 2019, 33(2): 87-94.
Guirong YANG, Dawen GAO, Wenming SONG, Yufu ZHANG, Ying MA. Formation Mechanism of Ni/WC Composite Coatings on Carbon Steel[J]. Chinese Journal of Materials Research, 2019, 33(2): 87-94.

全文: PDF(18359 KB)   HTML
摘要: 

采用真空熔覆技术在45钢表面制备Ni +WC复合熔覆层并进行阶段性取样,研究镍基复合涂层的形成机制。结果表明:在45钢表面生成与基体冶金熔合、WC硬质颗粒分布均匀的Ni基复合熔覆层。整个熔覆层由4 mm厚的复合层、1 mm厚的过渡层、20 μm厚的扩散熔合区以及250 μm厚的扩散影响区组成。复合层区由WC和分解形成的富W复相碳化物包围在Ni颗粒周围组成;复合熔覆层的主要组成相有γ-Ni固溶体、Cr7C3、Ni2.9Cr0.7Fe0.36、Cr23C6、Ni3Fe、Ni3Si、Ni3B、W2C以及C等;真空熔覆过程包括:镍基合金颗粒达到熔点(900℃)前升温阶段颗粒间微烧结颈的形成、升温达到熔点(1020℃)开始的镍基合金颗粒熔融以及保温阶段(1060℃)的熔合扩散与WC颗粒微区位置的调整。

关键词 复合材料形成机理真空熔覆复相碳化物    
Abstract

Ni+WC composite cladding was prepared on the surface of 45 # steel by vacuum cladding technology. The formation mechanism of nickel-based composite coating was investigated by intermittently sampling. The results show that a Ni-based composite cladding with metallurgical fusion to the matrix and uniform distribution of WC hard particles is obtained on the surface of 45 steel. The entire cladding consists of a 4 mm thick composite layer, a 1 mm thick transition layer, a 20 μm thick diffusion fused zone, and a 250 μm thick diffusion affected zone. The composite layer composes of WC and W-rich multiphase carbide formed after decomposition, surrounded by Ni particles; The main phase constituents of the composite cladding layer include γ-Ni solid solution, Cr7C3, Ni2.9Cr0.7Fe0.36, Cr23C6, Ni3Fe, Ni3Si, Ni3B, W2C and C. The vacuum cladding process mainly includes the formation of a micro-sintered neck between the particles in the heating stage before the Ni-based alloy particles reach its melting point, and the melting of the Ni-based alloy particles at the beginning stage of its melting point and the third stages of fusion diffusion in the heat preservation stage and position adjustment of the WC particle within micro-area.

Key wordscomposite    formation mechanism    vacuum cladding    complex phase carbide
收稿日期: 2018-08-16     
ZTFLH:  TG174.44  
基金资助:国家自然科学基金(51765035);国家自然科学基金(51205178)
作者简介: 杨贵荣,女,1976年生,博士
ElementsCSiCrBFeNi
Content0.7~1.13.5~5.015.0~17.03.0~4.0≤5.0Bal.
表1  Ni基合金粉末的化学成分
图1  粉末的形貌和大小
图2  Ni+20%WC熔覆层横截面
图3  Ni + 20%WC熔覆层的XRD谱
图4  复合涂层与基体结合处预制层侧结合面的表面形貌
ElementsCWCrFeNi
Content68.750.7827.9-2.57
表2  图4中点A的成分分析
图5  基体与复合涂层结合处基体侧结合面的表面形貌
图6  剥离涂层表面形貌
图7  剥离涂层正面扫描结果
图8  剥离涂层侧面的形貌
图9  剥离涂层截面SEM形貌
图10  熔覆过程示意图
[1] Guo C, Chen J M, Zhou J C, et al. Effects of WC-Ni content on microstructure and wear resistance of laser cladding Ni-based alloys coating [J]. Surf. Coat. Technol., 2012, 206: 2064
[2] Simunovic K, Saric T, Simunovic G. Different approaches to the investigation and testing of the Ni-based self-fluxing alloy coatings—a review. Part 1. General facts, wear and corrosion investigations [J]. Tribol. Trans., 2014, 57: 955
[3] Park Y S, Bae D H. Assessment of the crack growth characteristics at the low fatigue limit of a multi-pass welded Ni-based alloy 617 [J]. J. Mech. Sci. Technol., 2014, 28: 1251
[4] Guo C, Zhou J S, Chen J M, et al. High temperature wear resistance of laser cladding NiCrBSi and NiCrBSi/WC-Ni composite coatings [J]. Wear, 2011, 270: 492
[5] Yang G R, Huang C P, Song W M, et al. Microstructure characteristics of Ni/WC composite cladding coatings [J]. Int. Miner J. Metall. Mater., 2016, 23: 184
[6] Wang X S. Research on the formation mechanisms and properties of Ni-Co/WC+G composite coatings deposited by vacuum cladding on casting steel substrate [D]. Lanzhou: Lanzhou University of Technology, 2016
[6] (王旭升. 铸钢表面Ni-Co/WC+G复合熔覆层的形成机制及性能研究 [D]. 兰州: 兰州理工大学, 2016)
[7] Eso O, Fang Z, Griffo A. Liquid phase sintering of functionally graded WC-Co composites [J]. Int. Refract J. Met. Hard Mater., 2005, 23: 233
[8] Eso O, Fang Z Z, Griffo A. Kinetics of cobalt gradient formation during the liquid phase sintering of functionally graded WC-Co [J]. Int. Refract J. Met. Hard Mater., 2006, 25: 286
[9] Gao Y, Luo B H, He K J, et al. Mechanical properties and microstructure of WC-Fe-Ni-Co cemented carbides prepared by vacuum sintering [J]. Vacuum, 2017, 143: 271
[10] Gao Y, Luo B H, He K J, et al. Effect of Fe/Ni ratio on the microstructure and properties of WC-Fe-Ni-Co cemented carbides [J]. Ceram. Int., 2018, 44: 2030
[11] Elkhoshkhany N, Hafnway A, Khaled A. Electrodeposition and corrosion behavior of nano-structured Ni-WC and Ni-Co-WC composite coating [J]. J. Alloys Compd., 2017, 695: 1505
[12] Babu P S, Rao P C, Jyothirmayi A, et al. Evaluation of microstructure, property and performance of detonation sprayed WC-(W, Cr)2C-Ni coatings [J]. Surf. Coat. Technol., 2018, 335: 345
[13] Ghasali E, Ebadzadeh T, Alizadeh M, et al. Mechanical and microstructural properties of WC-based cermets: A comparative study on the effect of Ni and Mo binder phases [J]. Ceram. Int., 2018, 44: 2283
[14] Cui Z Q, Qin Y C. Metallography and Heat Treatment [M]. 2nd ed. Beijing: China Machine Press, 2007
[14] 崔忠圻, 覃耀春. 金属学与热处理[M]. 2版. 北京: 机械工业出版社, 2007
[15] Yuan Y L, Li Z G. Dissolving and precipitating characteristics of WC and carbides in the Ni60A+WC graded coating [J]. J. Mater. Eng., 2013, (11): 12
[15] (袁有录, 李铸国. Ni60A+WC增强梯度涂层中WC的溶解与碳化物的析出特征 [J]. 材料工程, 2013, (11): 12)
[16] Wang Z H, Yang A D, Zhang T, et al. Dissolution behavior of WC in WC reinforced composite coatings [J]. J. Mater. Eng., 2008, (9): 56
[16] (王智慧, 杨爱弟, 张田等. 真空熔覆WC颗粒增强复合涂层中WC溶解行为的研究 [J]. 材料工程, 2008, (9): 56)
[17] Zhang Z, Liu H X, Zhang X W, et al. Dissolution behavior of WC reinforced particles on carbon steel surface during laser cladding process [J]. Adv. Mater. Res., 2012, 430-432: 137
[18] Lu J B. Interfacial microstructure of vacuum sintered Ni-based coating [J]. Vacuum, 2006, 43(6): 30
[18] (卢金斌. 真空熔结镍基合金的界面组织研究 [J]. 真空, 2006, 43(6): 30)
[19] Lu J B. Study on performance of vacuum sintered Ni-based coating [J]. Surf. Technol., 2006, 35(6): 25
[19] (卢金斌. 真空熔结镍基合金涂层性能的研究 [J]. 表面技术, 2006, 35(6): 25)
[20] Lu J B. Microstructure of vacuum sintered Ni60 alloy and formation mechanism of M7C3 [J]. Weld. Join., 2006, (2): 28
[20] (卢金斌. Ni60合金真空烧结组织及M7C3形成机理 [J]. 焊接, 2006, (2): 28)
[21] Huang X B. Study on the preparation and properties of vacuum fusion sintered WC/Ni and WC/Co composite coatings [D]. Xi'an: Xidian University, 2005
[21] (黄新波. 真空熔覆Ni基合金—碳化钨和Co基合金—碳化钨复合涂层的制备及性能研究 [D]. 西安: 西安电子科技大学, 2005
[22] Huang P Y. Principles of Powder Metallurgy [M]. 2nd ed. Beijing: Metallurgy Industry Press, 1997
[22] (黄培云. 粉末冶金原理 [M]. 第2版. 北京: 冶金工业出版社, 1997)
[23] Günther K, Bergmann J P. Understanding the dissolution mechanism of fused tungsten carbides in Ni-based alloys: An experimental approach [J]. Mater. Lett., 2018, 213: 253
[1] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] 刘瑞峰, 仙运昌, 赵瑞, 周印梅, 王文先. 钛合金/不锈钢复合板的放电等离子烧结技术制备及其性能[J]. 材料研究学报, 2023, 37(8): 581-589.
[3] 季雨辰, 刘树和, 张天宇, 查成. MXene在锂硫电池中应用的研究进展[J]. 材料研究学报, 2023, 37(7): 481-494.
[4] 王伟, 解泽磊, 屈怡珅, 常文娟, 彭怡晴, 金杰, 王快社. Graphene/SiO2 纳米复合材料作为水基润滑添加剂的摩擦学性能[J]. 材料研究学报, 2023, 37(7): 543-553.
[5] 张藤心, 王函, 郝亚斌, 张建岗, 孙新阳, 曾尤. 基于界面氢键结构的石墨烯/聚合物复合材料的阻尼性能[J]. 材料研究学报, 2023, 37(6): 401-407.
[6] 邵萌萌, 陈招科, 熊翔, 曾毅, 王铎, 王徐辉. C/C-ZrC-SiC复合材料的Si2+ 离子辐照行为[J]. 材料研究学报, 2023, 37(6): 472-480.
[7] 张锦中, 刘晓云, 杨健茂, 周剑锋, 查刘生. 温度响应性双面纳米纤维的制备和性能[J]. 材料研究学报, 2023, 37(4): 248-256.
[8] 王刚, 杜雷雷, 缪自强, 钱凯成, 杜向博文, 邓泽婷, 李仁宏. 聚多巴胺改性碳纤维增强尼龙6复合材料的界面性能[J]. 材料研究学报, 2023, 37(3): 203-210.
[9] 林师峰, 徐东安, 庄艳歆, 张海峰, 朱正旺. TiZr基非晶/TC21双层复合材料的制备和力学性能[J]. 材料研究学报, 2023, 37(3): 193-202.
[10] 苗琪, 左孝青, 周芸, 王应武, 郭路, 王坦, 黄蓓. 304不锈钢纤维/ZL104铝合金复合泡沫的孔结构、力学、吸声性能及其机理[J]. 材料研究学报, 2023, 37(3): 175-183.
[11] 张开银, 王秋玲, 向军. FeCo/SnO2 复合纳米纤维的制备及其吸波性能[J]. 材料研究学报, 2023, 37(2): 102-110.
[12] 周聪, 昝宇宁, 王东, 王全兆, 肖伯律, 马宗义. (Al11La3+Al2O3)/Al复合材料的高温性能及其强化机制[J]. 材料研究学报, 2023, 37(2): 81-88.
[13] 罗昱, 陈秋云, 薛丽红, 张五星, 严有为. 钠离子电池双层碳包覆Na3V2(PO4)3 正极材料的超声辅助溶液燃烧合成及其电化学性能[J]. 材料研究学报, 2023, 37(2): 129-135.
[14] 谢东航, 潘冉, 朱士泽, 王东, 刘振宇, 昝宇宁, 肖伯律, 马宗义. 增强颗粒尺寸对B4C/Al-Zn-Mg-Cu复合材料微观组织及力学性能的影响[J]. 材料研究学报, 2023, 37(10): 731-738.
[15] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.