Please wait a minute...
材料研究学报  2019, Vol. 33 Issue (2): 109-116    DOI: 10.11901/1005.3093.2018.504
  本期目录 | 过刊浏览 |
挤压态6013-T4铝合金在动态冲击载荷下的变形行为及其微观机理
叶拓1,2,3,吴远志1,3(),刘安民1,3,唐徐2,李落星2
1. 湖南工学院汽车零部件技术研究院 衡阳 421002
2. 湖南大学汽车车身先进设计与制造国家重点实验室 长沙 410082
3. 湖南工学院机械工程学院 衡阳 421002
Deformation Behavior and Micro-mechanism of As-extruded 6013-T4 Al Alloy under Dynamic Impact Loading
Tuo YE1,2,3,Yuanzhi WU1,3(),Anmin LIU1,3,Xu TANG2,Luoxing LI2
1. Research Institute of Automobile Parts Technology, Hunan Institute of Technology, Hengyang 421002, China
2. State Key Laboratory Design and Manufacture for Vehicle Body, Hunan University, Changsha 410082, China
3. School of Mechanical and Engineering, Hunan University, Changsha 421002, China
引用本文:

叶拓,吴远志,刘安民,唐徐,李落星. 挤压态6013-T4铝合金在动态冲击载荷下的变形行为及其微观机理[J]. 材料研究学报, 2019, 33(2): 109-116.
Tuo YE, Yuanzhi WU, Anmin LIU, Xu TANG, Luoxing LI. Deformation Behavior and Micro-mechanism of As-extruded 6013-T4 Al Alloy under Dynamic Impact Loading[J]. Chinese Journal of Materials Research, 2019, 33(2): 109-116.

全文: PDF(9083 KB)   HTML
摘要: 

使用霍普金森压杆试验装置进行挤压态6013-T4铝合金的室温动态压缩实验,应变速率为1×103~3×103 s-1。结果表明,6013-T4铝合金在动态压缩过程中表现出明显的应变硬化和正应变速率敏感性;随着应变和应变速率的提高位错密度增大,在高应变速率和大应变量变形后试样的位错塞积显著。在相同的变形条件下0°方向试样的应力总是最高,而45°方向试样的应力最低。挤压态6013-T4合金的主要织构类型为{112}<111>和{110}<111>。对于{112}<111>织构,0°、45°和90°方向的最大施密特因子分别为0.27、0.49和0.41。对于{110}<111>织构,最大施密特因子分别为0.27、0.43和0.41。0°方向的施密特因子最小,使该方向的应力水平较高。在相同的应变速率和应变量条件下动态压缩变形时,0°方向试样的位错密度更高。在冲击件的材料选择和结构设计中有必要考虑材料的应变速率敏感性、力学性能各向异性以及微观组织的演变。

关键词 金属材料6013-T4铝合金动态压缩各向异性微观组织演变    
Abstract

Dynamic compression tests of the as-extruded 6013-T4 Al-alloy were carried out via split Hopkinson pressure bar at room temperature with strain rates ranging from 1×103 s-1 to 3×103 s-1. The results show that the alloy exhibits obvious strain hardening and positive strain rate sensitivity. The density of the dislocation increases with the increasing strain and strain rate. High strain rate and large strain deformation lead to the pile-up of dislocations. Under the same impact condition, the 0° specimen displays the highest stress level, and the 45° specimen has the lowest one. The Schmid factors for each type of the main texture components were calculated. The max Schmid factors are 0.27 for 0°, 45° and 90° specimens, and 0.49 and 0.41 for {112}<111> texture; they are 0.27, 0.43 and 0.41 for {110}<111> texture. The Schmid factors of 0° specimens are always the smallest, which results in a higher stress level. When the specimens were dynamic compressed under the same strain and strain rate, the dislocation density of 0° specimen is the highest. Therefore, it is necessary to consider the strain rate sensitivity, anisotropic mechanical behavior and microstructure evolution in the material selection and structural design of components subjected impact loads.

Key wordsmetallic materials    6013-T4 aluminum alloy    dynamic compression    anisotropy    micro-structure evolution
收稿日期: 2018-08-13     
ZTFLH:  TG146  
基金资助:国家自然科学基金(51501061);国家重点研发计划(2016YFB0101700);湖南省自然科学基金(2018JJ4031);衡阳市科技指导性项目(2017KJ254)
作者简介: 叶 拓,男,1987年生,讲师
图1  6013-T4铝合金的切样示意图
图2  SHPB实验装置示意图
图3  微观组织观测面的示意图
图4  6013-T4铝合金的动态压缩真应力-真应变曲线
图5  6013-T4铝合金0°方向试样在不同应变量下的透射图
图6  6013-T4铝合金的应变速率敏感性
图7  6013-T4铝合金0°方向试样不同应变速率冲击后的透射电镜照片
图8  6013-T4铝合金的力学性能各向异性
图9  6013-T4铝合金的初始显微组织
图10  挤压态6013-T4铝合金的ODF图
图11  挤压态6013-T4铝合金不同方向试样高速冲击后的透射电镜照片
[1] Zhang J, Ma M, Shen F, et al. Influence of deformation and annealing on electrical conductivity, mechanical properties and texture of Al-Mg-Si alloy cables [J]. Mater. Sci. Eng. A, 2018, 710: 27
[2] Liu M P, Wei J T, Li Y C, et al. Dynamic aging behavior and mechanical properties of an Al-Mg-Si aluminum alloy induced by equal channel angular pressing [J]. Chin. J. Mater. Res., 2016, 30(10): 721
[2] (刘满平, 韦江涛, 李毅超等. 等通道转角挤压 Al-Mg-Si 铝合金的动态时效特性和力学性能 [J]. 材料研究学报, 2016, 30(10): 721)
[3] Li H, Yan Z, Cao L. Bake hardening behavior and precipitation kinetic of a novel Al-Mg-Si-Cu aluminum alloy for lightweight automotive body [J]. Mater. Sci. Eng. A, 2018, 728: 88
[4] Deng Y L, Wang Y F, Lin H Q, et al. Effect of extrusion temperature on strength and fracture toughness of an Al-Zn-Mg Alloy [J]. Chin. J. Mater. Res., 2016, 30(2): 87
[4] (邓运来, 王亚风, 林化强等. 挤压温度对 Al-Zn-Mg 合金力学性能的影响 [J]. 材料研究学报, 2016, 30(2): 87)
[5] Liu C Y, Qu B, Xue P, et al. Fabrication of large-bulk ultrafine grained 6061 aluminum alloy by rolling and low-heat-input friction stir welding [J]. Mater. J. Sci. Technol., 2018, 34(1): 112
[6] Xiao W C, Wang B Y, Kang Y, et al. Deep drawing of aluminum alloy 7075 using hot stamping [J]. Rare. Met., 2017, 36(6): 485
[7] Afifi M A, Pereira P H R, Wang Y C, et al. Effect of ECAP processing on microstructure evolution and dynamic compressive behavior at different temperatures in an Al-Zn-Mg alloy [J]. Mater. Sci. Eng., A, 2017, 684: 617
[8] Huang Y, Deng Y L, Chen L, et al. Microstructure, texture and property of extruded 7N01 aluminum alloy plates [J]. Chin. J. Mater. Res., 2014, 28(7): 541
[8] (黄 英, 邓运来, 陈 龙等. 7N01 铝合金挤压板的微结构, 织构和性能 [J]. 材料研究学报, 2014, 28(7): 541)
[9] Li D, Zhang D, Liu S, et al. Dynamic recrystallization behavior of 7085 aluminum alloy during hot deformation [J]. Trans. Nonferrous Met. Soc. China., 2016, 26(6): 1491
[10] Dong Y, Zhang C, Zhao G, et al. Constitutive equation and processing maps of an Al-Mg-Si aluminum alloy: Determination and application in simulating extrusion process of complex profiles [J]. Mater. Des., 2016, 92: 983
[11] Teng G B, Liu C Y, Li J, et al. Effect of Sc on microstructure and mechanical property of 7055Al-alloy [J]. Chin. J. Mater. Res., 2018, 32(2): 112
[11] (滕广标, 刘崇宇, 李 剑. 添加Sc对7055铝合金微观结构和力学性能的影响 [J]. 材料研究学报, 2018, 32(2): 112)
[12] Cheng T C, Lee R S. The influence of grain size and strain rate effects on formability of aluminium alloy sheet at high-speed forming [J]. J. Mater. Process. Technol., 2018, 253: 134
[13] Huang L, Luo W Y, Liu X L, et al. Research on plastic flow behaviors for hole flanging part of aluminum alloy with large complicated profiles by electromagnetic forming [J]. J. Mater. Eng., 2013, 49(24): 24
[13] (黄 亮, 骆文勇, 刘贤龙等. 大型复杂型面铝合金翻边件电磁成形塑性流动行为研究 [J]. 机械工程学报, 2013, 49(24): 24)
[14] Thi-Hoa P, Thi-Bich M, Van-Canh T, et al. A study on the cutting force and chip shrinkage coefficient in high-speed milling of A6061 aluminum alloy [J]. Int. Adv. J. Manuf. Tech., 2017: 1
[15] Olasumboye A T, Owolabi G M, Odeshi A G, et al. Dynamic behavior of AA2519-T8 aluminum alloy under high strain rate loading in compression [J]. Dyn. J. Behav. Mater., 2018, 4(2): 151
[16] Xiao G, Li L Y, Liu Z W, et al. Hot deformation behavior and processing map of 6013 aluminum alloy [J]. Trans. Mater. Heat. Treat., 2014, (10): 23
[16] (肖 罡, 李落星, 刘志文等. 6013铝合金的热变形行为及热加工图 [J]. 材料热处理学报, 2014, (10): 23)
[17] Xiao G, Yang Q, Li L, et al. Constitutive analysis of 6013 aluminum alloy in hot plane strain compression process considering deformation heating integrated with heat transfer [J]. Met. Mater. Int., 2016, 22(1): 58
[18] Zhao Y, Zhou L, Wang Q, et al. Defects and tensile properties of 6013 aluminum alloy T-joints by friction stir welding [J]. Mater. Des., 2014, 57: 146
[19] Hirth G, Kohlstedt D L. The stress dependence of olivine creep rate: Implications for extrapolation of lab data and interpretation of recrystallized grain size [J]. Earth. Planet. Sci. Lett., 2015, 418: 20
[20] Chen J Z, Zhen L, Dai S L, et al. Effects of grain shape and texture on the through-thickness yield strength of AA 7055 aluminum alloy plate [J]. Rare. Met. Mater. Eng., 2008, 37(11): 1966
[20] (陈军洲, 甄 良, 戴圣龙等. 晶粒形貌及织构对 AA7055 铝合金板材不同厚度层屈服强度的影响 [J]. 稀有金属材料与工程, 2008, 37(11): 1966)
[21] Li H, Jiang Z, Wei D, et al. Surface asperity evolution and microstructure analysis of Al 6061T5 alloy in a quasi-static cold uniaxial planar compression (CUPC) [J]. Appl. Surf. Sci., 2015, 347: 19
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] 刘天福, 张滨, 张均锋, 徐强, 宋竹满, 张广平. 缺口应力集中系数对TC4 ELI合金低周疲劳性能的影响[J]. 材料研究学报, 2023, 37(7): 511-522.