Please wait a minute...
材料研究学报  2019, Vol. 33 Issue (3): 199-208    DOI: 10.11901/1005.3093.2018.483
  本期目录 | 过刊浏览 |
(Gd, Y)相对GW103K时效合金局部腐蚀的影响
于爽1,2,贾瑞灵1(),张函1,2,张伟2,郭锋1
1. 内蒙古工业大学材料科学与工程学院 内蒙古薄膜与涂层重点实验室 呼和浩特 010051
2. 中国科学院金属研究所 金属腐蚀与防护实验室 沈阳 110016
Effect of (Gd, Y) Containing-phases on Local Corrosion of Aged GW103K Alloy
Shuang YU1,2,Ruiling JIA1(),Han ZHANG1,2,Wei ZHANG2,Feng GUO1
1. School of Materials Science and Engineering, Inner Mongolia University of Technology, Key Laboratory of Film and Coating in Inner Mongolia, Hohhot 010051,China
2. Laboratory for Corrosion and Protection, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016,China
引用本文:

于爽,贾瑞灵,张函,张伟,郭锋. (Gd, Y)相对GW103K时效合金局部腐蚀的影响[J]. 材料研究学报, 2019, 33(3): 199-208.
Shuang YU, Ruiling JIA, Han ZHANG, Wei ZHANG, Feng GUO. Effect of (Gd, Y) Containing-phases on Local Corrosion of Aged GW103K Alloy[J]. Chinese Journal of Materials Research, 2019, 33(3): 199-208.

全文: PDF(16195 KB)   HTML
摘要: 

对Mg-10Gd-3Y-0.4Zr(GW103K)合金进行193 h时效处理,使用扫描电子显微镜(SEM)和透射电子显微镜(TEM)观测块状和链状相的微观结构和腐蚀形貌,使用扫描开尔文探针显微镜(SKPFM)测试块状相和链状相与基体之间的相对电势差,研究了这些相对GW103K合金局部腐蚀的影响。结果表明:分布在晶内和晶界的单独块状相为Mg2(Gd, Y)相,(Gd, Y)固溶体与Mg2(Gd, Y)相交替排列形成链状相。(Gd, Y)固溶体和Mg2(Gd, Y)相的相对电势均高于基体,与相邻基体形成微电池,(Gd, Y)固溶体和Mg2(Gd, Y)相作为阴极促进了周围基体的腐蚀。尽管(Gd,Y)固溶体与基体之间的相对电势差更大,但是与基体的相界面为共格界面,界面能低、化学稳定性高,因此对基体腐蚀没有更强烈的影响。

关键词 金属材料镁合金腐蚀微电偶SKPFM(Gd,Y)相相对电势    
Abstract

The cast Mg-10Gd-3Y-0.4Zr (GW103K) alloy was solution treated at 500oC for 4 h and then aged at 225℃ for 193 h. The microstructure and corrosion performance in NaCl solution of the alloy were assessed by means of scanning electron microscope (SEM), transmission electron microscope (TEM), immersion test and scanning Kelvin probe atomic force microscope (SKPFM). The results show that the alloy shows a microstructure composed of α-Mg matrix with bulk-like Mg2(Gd, Y) phase and chain-like structure of alternatively arranged phases of (Gd,Y) solid solution and Mg2(Gd, Y), while the later two phases distributed in grains and/or at grain boundaries. The free corrosion potentials of the two phases (Gd, Y) solid solution and bulk-like Mg2(Gd, Y) are nobler than that of the α-Mg matrix, thereby the micro-galvanic coupling could form between the former phases with the α-Mg matrix. The (Gd, Y) solid solution and bulk-like Mg2(Gd, Y) acted as micro-cathodes to promote the corrosion of the surrounding matrix. It is worthy noted that even though the relative potential difference between the (Gd, Y) solid solution and the α-Mg matrix is greater, however, the interface between the (Gd, Y) solid solution and α-Mg matrix is coherent and the interfacial energy of the two phases is lower, thus they may exhibit better chemical compatibility, as a result, the (Gd, Y) solid solution phase may have little influence on the matrix corrosion.

Key wordsmetallic materials    Mg alloy    corrosion micro-galvanic    SKPFM    (Gd,Y) phase    relative potential
收稿日期: 2018-07-31     
ZTFLH:  TG430.40  
基金资助:内蒙古自然科学基金(2016MS0538);STS计划配套(2016T3030)
作者简介: 于 爽,女,1994年生,硕士生
图1  时效处理193 h后GW103K合金的SEM形貌
图2  时效193 h的GW103K合金中块状相的TEM明场相和选区电子衍射斑点、放大的块状相明场相、EDS能谱图以及傅里叶变换图和反傅里叶变换图
图3  时效193 h后 GW103K合金中链状相和块状相的TEM明场像、选区电子衍射斑点、傅里叶变换图和反傅里叶变换图以及能谱分析
图4  时效处理193 h的GW103K合金腐蚀前后的HAADF-STEM形貌
图 5  时效处理193 h的GW103K合金在3.5 % NaCl溶液中浸泡后的SEM腐蚀形貌
图 6  时效处理193 h后GW103K合金中块状Mg2(Gd, Y)相的AFM形貌、三维电势图和电势分布
图 7  时效处理193 h后GW103K合金中链状相的AFM形貌图、三维电势图和电势折线图
[1] WangZ W, ZhangZ M, ZhangX. Magnesium Alloy Application and Its Plastic Forming Technology [J]. J. Nor. China Inst. Technol., 2005, 26(1): 70
[1] (王智文, 张治民, 张 星. 镁合金的应用现状及其塑性成形技术 [J]. 华北工学院学报, 2005, 26(1): 70)
[2] LiuX W, LiuY, JinB, et al. Microstructure Evolution and Mechanical Properties of a SMATed Mg Alloy under In Situ SEM Tensile Testing [J]. J. Mater. Sci. Technol., 2017, 33: 224
[3] AghionE, BronfinB. Magnesium Alloys Development towards the 21~(st) Century[J]. Mater. Sci. Forum., 2000(0): 19
[4] ZhangD F, ZhanX, PanF S, et al. Research status of effect of rare earth element on mechanical properties of magnesium alloys [J]. J. Funct. Mater., 2014, 45(5): 05001
[4] (张丁非, 谌 夏, 潘复生等. 稀土元素对镁合金力学性能影响的研究进展 [J]. 功能材料, 2014, 45(5): 05001)
[5] SatetR L, HoffmannM J. Influence of the rare-earth element on the mechanical properties of RE-Mg-bearing silicon nitride [J]. J. the Am. Ceram. Soc., 2005, 88(9): 2485
[6] NodooshanH R J, WuG, LiuW, et al. Effect of Gd content on high temperature mechanical properties of Mg-Gd-Y-Zr alloy [J]. Mater. Sci. Eng. A, 2016, 651: 840
[7] YangQ, XiaoB L, WangD, et al. Formation of long-period stacking ordered phase only within grains in Mg-Gd-Y-Zn-Zr casting by friction stir processing [J]. J. Alloys Compd., 2013, 581: 585
[8] ZongX M, WangD, LiuW, et al. Effect of precipitated phases on corrosion of Mg95.8Gd3Zn1Zr0.2 alloy with long-period stacking ordered structure[J]. Acta Metall. Sin-Engl., 2016, 29(1): 32
[9] ZhangJ Z, MaZ X, LiD F. Influence of heat treatment on mechanical properties and microstructure of Mg-Gd-Y-Zr alloy [J]. Mater. Heat Treat., 2007, 36(18): 73
[9] (张家振, 马志新, 李德富. 热处理对Mg-Gd-Y-Zr合金组织和力学性能的影响 [J]. 材料热处理, 2007, 36(18): 73)
[10] LiangS Q, GuanD K, ChenL, et al. Precipitation and its effect on age-hardening behavior of as-cast Mg-Gd-Y alloy [J]. Mater. Des., 2011, 32: 361
[11] LiuX B, ChenR S, HanE H. Effects of ageing treatment on microstructures and properties of Mg-Gd-Y-Zr alloys with and without Zn additions [J]. J. Alloys Compd., 2008, 465: 232
[12] GuoQ Y, SunJ, MaoP L, et al. Analysis on precipitated phases in Mg-Gd-Y(Zr) alloy subjected to aging treatment [J]. J. Shenyang Univ. Technol., 2013, 35(5): 530
[12] (郭全英, 孙 晶, 毛萍莉等. Mg-Gd-Y(Zr)合金时效析出相分析 [J]. 沈阳工业大学学报, 2013, 35(5): 530)
[13] WangQ L, WuG H, HouZ Q, et al. Elevated aging behavior of Mg-Gd-Y-Zr alloy [J]. Specl. Casting Nonfer. Alloys, 2009, 29 (11): 1053
[13] (王其龙, 吴国华, 侯正全等. Mg-Gd-Y-Zr合金的高温时效行为研究 [J].特种铸造及有色合金, 2009, 29(11): 1053)
[14] ZhouJ, FengZ Y, ZhangJ L, et al. Effect of Nd addition on corrosion resistance of AM60 magnesium alloy [J]. J. Chin. Soc. Corr. Pro., 2014, 34(2): 185
[14] (周 京, 冯芝勇, 张金玲等. 稀土Nd含量对AM60镁合金耐蚀性能的影响 [J]. 中国腐蚀与防护学报, 2014, 34(2): 185)
[15] PengL M, ChangJ W, GuoX W, et al. Influence of heat treatment and microstructure on the corrosion of magnesium alloy Mg-10Gd-3Y-0.4Zr [J]. J. Appl. Electrochem., 2009, 39: 913
[16] LiangS Q, GuanD K, TanX P. The relation between heat treatment and corrosion behavior of Mg-Gd-Y-Zr alloy [J]. Mater. Des., 2011, 32: 1194
[17] SongY W, ShanD Y, HanE H. Pitting corrosion of a Rare Earth Mg alloy GW93 [J]. J. Mater. Sci. Technol., 2017, 33: 954
[18] LiuJ H, SongY W, ChenJ C, et al. The special role of anodic second phases in the micro-galvanic corrosion of EW75 Mg alloy [J]. Electrochim. Acta, 2016, 189: 190.
[19] SongY W, ShanD Y, ChenR S,et al.Effect of second phases on the corrosion behaviour of wrought Mg-Zn-Y-Zr alloy [J]. Corros. Sci., 2010, 52: 1830
[20] YuS, JiaR L, ZhangT, et al. Effect of different scale precipitates on corrosion behavior of Mg-10Gd-3Y-0.4Zr alloy [J]. Acta Metall. Sin-Engl., 2018, DOI: 10.1007/s40195-018-0792-7180288.
[21] YuY N. Principles of Metallography [M]. Beijing: Metallurgy Industry Press, 2013: 387
[21] (余永宁. 金属学原理 [M]. 北京: 冶金工业出版社, 2013: 387)
[22] GuX. Phase-field Dislocation Model of Mistif Dislocation in STO/Si Semi-coherent Interface and Dislocation Transmitting Across Al/Pd Coherent Interface[D]. Shanghai: Shanghai jiao tong University, 2015.
[22] (顾 骁. STO/Si半共格界面失配位错和位错穿越Al/Pd共格界面行为的相场位错模型 [D]. 上海: 上海交通大学, 2015)
[23] SongM, XiaoD H, HuangB Y. Interaction between semi-coherent Ω precipitates and dislocations in Al-Cu-Mg-Ag alloy [J]. J. Beijing Univ. Technol., 2008, 34(10): 1093
[23] (宋 旼, 肖代洪, 黄伯云. Al-Cu-Mg-Ag合金中半共格Ω析出相与位错的交互作用 [J]. 北京工业大学学报, 2008, 34(10): 1093)
[24] YongQ L, LiuQ Y, LiuS, et al. Theoretical calculation for specific interfacial energy of semiCoherent interface between MnS and austenite [J]. Special Steel, 2004, 25(6): 16
[24] (雍岐龙, 刘清友, 刘 苏等. 硫化锰与奥氏体之间半共格界面比界面能的理论计算 [J]. 特殊钢, 2004, 25(6): 16)
[25] HeS M, ZengX Q, PengL M, et al. Microstructure, mechanical properties, creep and corrosion resistance of Mg-Gd-Y-Zr(-Ca) Alloys [J]. Prog. Light Metals Aerospace Mater. Superconductors, 2007, 546: 101
[26] ChenY, ZhangL, ZhuJ J, et al. Phase interfaces between AlTiN and WC/Mo2C in WC-Mo2C substrate and the related characteristics [J]. Int. J. Refract. Met. Hard Mater., 2018, 72: 323
[27] ArrabalR., PardoA., MerinoM.C., et al. Effect of Nd on the corrosion behaviour of AM50 and AZ91D magnesium alloys in 3.5 wt.% NaCl solution [J]. Corros. Sci., 2012, 55 (2): 301
[28] EsfahaniZ, RahimiE, SarvghadM, et al. Correlation between the histogram and power spectral density analysis of AFM and SKPFM images in an AA7023/AA5083 FSW joint [J]. J. Alloys Compd., 2018, 744: 174
[29] CoyA E, ViejoF, SkeldonP, et al. Susceptibility of rare-earth-magnesium alloys to micro-galvanic corrosion [J]. Corros. Sci., 2010, 52(12): 3896
[30] BuzolinaR. H., MohedanoM., MendisC. L., et al. As cast microstructures on the mechanical and corrosion behaviour of ZK40 modified with Gd and Nd additions, Mater. Sci Eng., A, 2017, 682: 238
[31] JiD P, WangS Q. Study of surface energy and work function of HEX metals by First-Principles calculation [J]. Acta Metall. Sin., 2015, 51(5): 597
[31] (姬德朋, 王绍青. 第一原理方法研究六方晶系金属表面功函数和表面能 [J]. 金属学报, 2015, 51(5): 597)
[32] LiuG L. Electronic structure and corrosion character of Mg alloys [J]. Acta Phys. Sin., 2010, 59(4): 2708
[32] (刘贵立. 镁合金电子结构与腐蚀特性研究 [J]. 物理学报, 2010, 59(4): 2708)
[33] ZhangG Y, ZhangH, LiuY X, et al. Electronic theory study on the mechanism of stress corrosion in magnesium alloy [J]. China Foundry Machinery Technol., 2007(4): 13
[33] (张国英, 张 辉, 刘艳侠等. 镁合金应力腐蚀机理电子理论研究 [J]. 中国铸造装备与技术, 2007(4): 13)
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] 刘天福, 张滨, 张均锋, 徐强, 宋竹满, 张广平. 缺口应力集中系数对TC4 ELI合金低周疲劳性能的影响[J]. 材料研究学报, 2023, 37(7): 511-522.