Please wait a minute...
材料研究学报  2019, Vol. 33 Issue (3): 232-240    DOI: 10.11901/1005.3093.2018.432
  本期目录 | 过刊浏览 |
新型含铝奥氏体耐热合金的高温塑性变形行为和热加工性能
杨雨童,罗锐(),程晓农,桂香,陈乐利,王威,郑琦
江苏大学材料科学与工程学院 镇江 212013
High Temperature Plastic Deformation Behavior and Hot Workability of an Alumina-forming Austenitic Heat-resisting Alloy
Yutong YANG,Rui LUO(),Xiaonong CHENG,Xiang GUI,Leli CHEN,Wei WANG,Qi ZHENG
School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China
引用本文:

杨雨童,罗锐,程晓农,桂香,陈乐利,王威,郑琦. 新型含铝奥氏体耐热合金的高温塑性变形行为和热加工性能[J]. 材料研究学报, 2019, 33(3): 232-240.
Yutong YANG, Rui LUO, Xiaonong CHENG, Xiang GUI, Leli CHEN, Wei WANG, Qi ZHENG. High Temperature Plastic Deformation Behavior and Hot Workability of an Alumina-forming Austenitic Heat-resisting Alloy[J]. Chinese Journal of Materials Research, 2019, 33(3): 232-240.

全文: PDF(29707 KB)   HTML
摘要: 

新型含铝奥氏体耐热合金(AFA)进行压缩热模拟试验,使用OM和EBSD等手段研究了这种合金在950~1150℃和0.01~5 s-1条件下的微观组织演变、建立了基于动态材料模型热加工图、分析了变形参数对合金加工性能的影响并按照不同区域组织变形的特征构建了合金的热变形机理图。结果表明:新型AFA合金的高温流变应力受到变形温度和应变速率的显著影响。在变形温度为950~1150℃和应变速率为0.18~10 s-1条件下,这种合金易发生流变失稳。在变形温度为1050~1120℃、应变速率0.01~0.1 s-1和变形温度1120~1150℃、应变速率10-0.5~10-1.5 s-1这两个区间,这种合金发生完全动态再结晶行为且其再结晶晶粒均匀细小,功率耗散因子η达到峰值45%。新型AFA合金的热加工艺,应该优先选择再结晶区域。

关键词 金属材料奥氏体耐热合金热变形动态再结晶变形机制    
Abstract

The deformation behavior of a new alumina-forming austenitic stainless steel (AFA) was investigated by means of isothermal hot compression test with a strain rate range of 0.01~5 s-1 at 950~1150℃, as well as OM and EBSD characterization. The hot processing map of the AFA steel was established based on dynamic material model. The influence of deformation parameters on the processability of the steel was also analyzed. Besides, the thermal deformation mechanism diagram was also constructed according to the deformation characteristics of different regions. The results show that the high temperature flow stress of the new AFA steel is significantly affected by the deformation temperature and strain rate. Serious flow instability can be observed at 950~1150℃ with strain rates of 0.18~5 s-1. Fully dynamic recrystallization occurred under the deformation conditions of 1050~1120℃ and 0.01~0.1 s-1 or 1120~1150℃ and 10-0.5~10-1.5 s-1. The recrystallized grains are fine and homogeneous with the power dissipation factor η reaching the peak value of 45%. It is proposed that the recrystallization zone should be preferentially selected and the flow instability zone should be avoided in order to establish a reasonable hot processing system.

Key wordsmetallic materials    Austenitic heat-resisting alloy    hot deformation    dynamic recrystallization    deformation mechanism
收稿日期: 2018-07-03     
ZTFLH:  TG142.73  
基金资助:“十二五”国家高技术研究发展计划(863计划)(2012AA03A501);江苏省2014年度普通高校研究生科研创新计划(KYLY-1027)
作者简介: 杨雨童,男,1994年生,硕士生
CSiMnSPNiCrNbMoAlBN
0.0680.350.590.0120.00230.9217.480.391.522.470.010.026
表1  试验用材料化学成分
图1  新型AFA合金的流变应力曲线
图2  应变量为0.8、应变速率为0.01 s-1条件下不同变形温度AFA合金的晶粒取向分布
图3  应变量为0.8、变形温度为1050℃时不同应变速率AFA合金的晶粒取向分布
图4  应变量分别在0.3,0.4,0.5及0.6时新型AFA合金的热加工图
图5  在不同变形温度和应变速率条件下应变量与功率耗散因子值之间的关系
图6  新型AFA合金的功率耗散系数峰值区的动态再结晶组织
图7  应变量0.6时新型AFA合金的加工图
图8  变形条件为950℃和5 s-1对应的金相组织
图9  变形条件1150℃、5 s-1和1150℃、0.01 s-1对应的变形组织
图10  新型AFA合金热加工图中的失稳区组织
图11  在950℃和0.01 s-1与1000℃和0.1 s-1条件下的变形组织
图12  新型AFA合金的热变形机理图
[1] ChengX N, DaiQ X, LiD S. Developments of new materials used for key tube in unclear equipment [J]. Heat Treatment of Metals, 2010, 35(12): 21
[1] (程晓农, 戴起勋, 李冬升. 核电装备关键管材新材料研究进展 [J]. 金属热处理, 2010, 35(12): 21)
[2] RamakrisnanV, McgurtyJ A, JayarmanN. Oxidation of high-aluminum austenitic stainless steels [J]. Oxidation metals, 1988, 30(3-4): 185
[3] YamamotoY, BradyM P, LuZ P, et al. Creep-resistant Al2O3-forming austenitic stainless steels [J]. Science, 2007, 316(5823): 433
[4] NieS. H., ChenY., RenX., et al. Corrosion of alumina-forming austenitic steel Fe-20Ni-14Cr-3Al-0.6Nb-0.1Ti in supercritical water [J]. Journal of Nuclear Materials, 2010, 399(2): 231
[5] YamamotoY, MuralidharanG, BradyM P. Development of L12-ordered Ni3 (Al, Ti)-strengthened alumina-forming austenitic stainless steel alloys [J]. Scripta Materialia, 2013, 69(11-12): 816
[6] LuoR, ChengX N, ZhengQ, et al. Dynamic recrystallization behavior of an alumina-forming austenitic alloy Fe-20Cr-30Ni-0.6Nb-2Al-Mo [J]. Materials Review, 2017, 31(18): 136
[6] (罗 锐, 程晓农, 郑 琦, 朱晶晶等. 新型含铝奥氏体耐热合金Fe-20Cr-30Ni-0.6Nb-2Al-Mo的动态再结晶行为 [J]. 材料导报, 2017, 31(18): 136)
[7] BeiH, YamamotoY, BradyM P, et al. Aging effects on the mechanical properties of alumina-forming austenitic stainless steels [J]. Materials Science & Engineering A, 2010, 527(7-8): 2079
[8] DharmendraC., RaoK. P., ZhaoF., et al. Effect of silicon content on hot working, processing maps, and microstructural evolution of cast TX32-0.4Al magnesium alloy [J]. Materials Science and Engineering: A, 2014, 606: 11
[9] AnetaLukaszek-Solek, JanuszKrawczyk. The analysis of the hot deformation behavior of the Ti-3Al-8V-6Cr-4Zr-4Mo alloy, using processing maps, a map of microstructure and of hardness [J]. Materials and Design, 2015, 65: 165
[10] CAOY. Research of Microstructure Evolution Law and Hot Working Technology for Alloy 800H [D]. Shen Yang: Northeastern University, 2011
[10] (曹 宇. 800H合金组织演变规律与热加工工艺研究 [D]. 沈阳: 东北大学, 2011)
[11] PrasedY. V. R. K.. Moeling of dynamic material behavior in hot deformation: forging of Ti-242 [J]. Metallurgical and Materials Transactions A, 1984, 15A: 1883
[12] PrasedY. V. R. K.. Dynamic materials model: Base and principles [J], Metallurgical and Materials Transactions A, 1996, 27: 235
[13] KaramiM., MahmudiR.. Hot shear deformation constitutive analysis and processing map of extruded Mg-12Li-1Zn bcc alloy [J]. Materials and Design, 2014, 53: 534
[14] ZieglerH, CarlsonD E. An Introduction to Thermomechanics [J]. Applied Mathematics & Mechanics, 1977, 45(4): 996
[15] YuM, NiuZ J, MaoJ H, et al. Processing maps of Ti-50-9Ni shape memory alloy under different strains and instability criteria [J]. Chinese Journal of Raremetals, 2013, 37(5): 702
[15] (于 孟, 牛中杰, 毛江虹等. 不同应变及失稳准则Ti-50.9Ni合金加工图研究 [J]. 稀有金属, 2013, 37(5): 702)
[16] XinS, JieZ, XunW, et al. Optimizing and identifying the process parameters of AZ31 magnesium alloy in hot compression on the base of processing maps [J]. Journal of Alloys and Compounds, 2015, 629: 155
[17] JuQ, LiD G, LiuG Q. The processing map of hot plastic deformation of a 15Cr-25Ni-Fe base superalloy [J]. Acta Metallurgica Sinica, 2006, 42(2): 218
[17] (鞠 泉, 李殿国, 刘国权. 15Cr-25Ni-Fe基合金高温塑性变形行为的加工图 [J]. 金属学报, 2006, 42(2): 218)
[18] WuH., WenS. P., HuangH., et al. Hot deformation behavior and processing map of a new type Al-Zn-Mg-Er-Zr alloy [J]. Journal of Alloy and Compounds, 2016, 685: 869
[19] LiQ B, HouH T, JiangY F, et al. Research status quo and prospect of the theory of shop drawing [J]. Nonferrous Metals Engineering and Research, 2009, 30(4): 1
[19] (李庆波, 周海涛, 蒋永峰等. 加工图的理论研究现状与展望 [J]. 中国有色金属设计与研究, 2009, 30(4): 1)
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] 刘天福, 张滨, 张均锋, 徐强, 宋竹满, 张广平. 缺口应力集中系数对TC4 ELI合金低周疲劳性能的影响[J]. 材料研究学报, 2023, 37(7): 511-522.