Please wait a minute...
材料研究学报  2019, Vol. 33 Issue (2): 81-86    DOI: 10.11901/1005.3093.2018.398
  本期目录 | 过刊浏览 |
Pd/PANI纳米纤维的液相合成及其对乙醇的电化学行为
谭德新1,胡伟2,陈素娴1,简杰婷1,周丽珊1,王艳丽1()
1. 岭南师范学院化学化工学院 湛江 524048
2. 安徽理工大学材料科学与工程学院 淮南 232001
Liquid-Phase Synthesis and Electrocatalytic Oxidation of Ethanol of Palladium/Polyaniline-nanofibers
Dexin TAN1,Wei HU2,Suxian CHEN1,Jieting JIAN1,Lishan ZHOU1,Yanli WANG1()
1. School of Chemistry and Chemical Engineering, Lingnan Normal University, Zhanjiang 524048, China
2. School of Materials Science and Engineering, Anhui University of Science and Technology, Huainan 232001, China
引用本文:

谭德新,胡伟,陈素娴,简杰婷,周丽珊,王艳丽. Pd/PANI纳米纤维的液相合成及其对乙醇的电化学行为[J]. 材料研究学报, 2019, 33(2): 81-86.
Dexin TAN, Wei HU, Suxian CHEN, Jieting JIAN, Lishan ZHOU, Yanli WANG. Liquid-Phase Synthesis and Electrocatalytic Oxidation of Ethanol of Palladium/Polyaniline-nanofibers[J]. Chinese Journal of Materials Research, 2019, 33(2): 81-86.

全文: PDF(5337 KB)   HTML
摘要: 

以苯胺为单体、PdCl2为金属前驱体、过硫酸铵为氧化剂,在避光条件下液相化学氧化合成Pd/PANI纳米纤维,用XRD、FESEM、TEM、SAED、HRTEM、FT-IR和UV-vis等手段对其表征,研究了 Pd/PANI纳米纤维修饰玻碳电极对乙醇的电化学行为。结果表明,Pd/PANI纳米纤维的平均直径为20 nm,长度为500 nm;平均直径为6 nm的纳米Pd颗粒单分散分布在PANI纤维中;Pd/PANI纳米纤维修饰电极的ECSA值为54.76 m2/gPd,是商用Pd/C催化剂(6.08 m2/gPd)的9倍,其jf/jb值为1.192。

关键词 复合材料Pd/PANI纳米纤维液相合成电催化氧化乙醇    
Abstract

Nanofibers of palladium(Pd)/polyaniline(PANI) were synthesized via liquid phase chemical oxidation in dark conditions with aniline as monomer, palladium chloride (PdCl2) as palladium precursor and ammonium persulfate as oxidant. The synthesized nanofibers were characterized by XRD, FESEM, TEM, SAED, HRTEM, FT-IR spectroscopy and UV-visible spectroscopy. Electrochemical performance of ethanol oxidation was also investigated on a glassy carbon electrode modified with Pd/PANI nanofibers. The results show that the length of Pd/PANI nanofibers can reach up to 500 nm with average diameters of 20 nm. Pd nanoparticles with the average diameter of 6 nm can uniformly distribute over the PANI fibers. The electrochemical active surface area (ECSA) of the Pd/PANI/GCE (54.76 m2/gPd) is nine times higher than that of commercial Pd/C catalyst (6.08 m2/gPd). The value of jf/jb of Pd/PANI/GCE is 1.192.

Key wordscomposite    palladium (Pd)/polyaniline(PANI) nanofibers    liquid-phase synthesis    elec-trocatalytic oxidation    ethanol
收稿日期: 2016-06-21     
ZTFLH:  TB33  
基金资助:国家自然科学基金(51303005);广东省科技发展专项资金(2017A030307028);扬帆计划引进紧缺拔尖人才项目(0003017011);岭南师范学院校级科研项目(ZL1822);岭南师范学院校级科研项目(ZL1604)
作者简介: 谭德新,男,1977年生,副教授
图1  Pd/PANI纳米纤维的XRD图谱
图2  Pd/PANI纳米纤维的FESEM、TEM、SAED和HRTEM照片
图3  PANI和Pd/PANI纳米纤维的红外光谱图
图4  PANI和Pd/PANI纳米纤维的紫外光谱
图5  Pd/PANI/GCE在1 mol/L KOH溶液中的循环伏安曲线
图6  Pd/PANI/GCE在1 mol/L KOH+1 mol/L乙醇溶液中的循环伏安曲线
图7  Pd/PANI/GCE的计时电流曲线
[1] Moura Souza F, Nandenha J, Batista B L, et al. PdxN by electrocatalysts for DEFC in alkaline medium:Stability, selectivity and mechanism for EOR [J]. Int. J. Hydrogen Energ., 2018, 43(9): 4505
[2] Ao K L, Li D W, Yao Y X, et al. Electro-catalytic activity of composite films of Pd-doped bacterial cellulose nano-fibers for ethanol oxidation [J]. Chin. J. Mater. Res., 2018, 32(2): 155
[2] (敖克龙, 李大伟, 姚壹鑫等. 载钯细菌纤维素纳米纤维复合膜用于乙醇的电 催化氧化 [J]. 材料研究学报, 2018, 32(2): 155)
[3] Jiang Y, Yan Y C, Chen W L, et al. Single-crystalline Pd square nanoplates enclosed by {100} facets on reduce dgraphene oxide for formic acid electro-oxidation [J]. Chem. Commun., 2016, 52(99): 14204
[4] Wang X X, Yang J D, Yin H J, et al. “Raisin bun”-like nanocomposites of palladium clusters and porphyrin for superior formic acid oxidation [J]. Adv. Mater., 2013, 25(19): 2728
[5] Zhao R P, Fu G T, Zhou T G, et al. Multi-generation overgrowth induced synthesis of three-dimensinal highly Branched palladium tetrapods and their electrocatalytic activity for formic acid oxidation [J]. Nanoscale, 2014, 6(5): 2776
[6] Qiu X Y, Zhang H Y, Wu P S, et al. One-pot synthesis of freestanding porous palladium nanosheets as highly efficient electrocatalysts for formic acid oxidation [J]. Adv. Funct. Mater., 2017, DOI: 10.1002/adfm.201603852
[7] Chen D, Sun P C, Liu H, et al. Bimetallic Cu-Pd alloy multipods and their highly electrocatalytic performance for formic acid oxidation and oxygen reduction [J]. J. Mater. Chem. A., 2017, 5(9): 4421
[8] Wang X G, Zhu F C, He Y W, et al. Highly active carbon supported ternary PdSnPtx (x=0.1~0.7) catalysts for ethanol electro-oxidation in alkaline and acid media [J]. J. Colloid Interface Sci., 2016, 468(15): 200
[9] Wang M, Ma Z Z, Li R X, et al. Novel flower-like PdAu(Cu) anchoring on a 3D rGO-CNT sandwich-stacked framework for highly efficient methanol and ethanol electro-oxidation [J]. Electrochem. Acta., 2017, 227(10): 330
[10] Zhu F C, Ma G S, Bai Z C, et al. High activity of carbon nanotubes supported binary and ternary Pd-based catalysts for methanol,ethanol and formic acid electro-oxidation [J]. J. Power Source., 2013, 242(15): 610
[11] Li F M, Kang Y Q, Peng R L, et al. Sandwich-structured Au@polyallylamine@Pd nanostructures: tuning electronic property of Pd shell for electrocatalysis [J]. J. Mater. Chem. A., 2016, 4(31): 12020
[12] Silva J C M, De Souza R F B, Romano M A, et al. PtSnIr/C anode electrocatalysts: promoting effect in direct ethanol fuel cells [J]. Braz J. Chem. Soc., 2012, 23(6): 1146
[13] Xia Y Y, Liu N, Sun L, et al. Networked Pd(core)@polyaniline (shell) composite: Highly electro-catalytic ability and unique selectivity [J]. Appl. Surf. Sci., 2018, 428(15): 809
[14] Soleimani Lashkenari M, Rezai S, Fallah J, et al. Electrocatalytic performance of Pd/PANI/TiO2 nanocomposites for methanol electrooxidation in alkaline media [J]. Synthetic Met., 2018, 235(2): 71
[15] Prodromidis M I, Zahran E M, Tzakos A G, et al. Preorganized composite material of polyaniline epalladium nanoparticles with high electrocatalytic activity to methanol and ethanol oxidation [J]. Int. J. Hydrogen Energy, 2015, 40(21): 6745
[16] Zhang L F, Zhang J Z, Liu Y, et al. Effect of different acid dopant on electrochemical properties of polyaniline nanofibers [J]. Journal of Functional Polymers, 2015, 28(1): 40
[16] (张利锋, 张金振, 刘 毅等. 不同掺杂酸对纤维聚苯胺电化学性能的影响 [J].功能高分子学报, 2015, 28(1): 40)
[17] Chen Y, Li L Y, Zhang L, et al. In situ formation of ultrafine Pt nanoparticles on surfaces of polyaniline nanofibers as efficient heterogeneous catalysts for the hydrogenation reduction of nitrobenzene [J]. Colloid Polym. Sci., 2018, 296(3): 567
[18] Tan D X, Wang Y L. Visible-light-assisted SLCs template synthesis of sea anemone-like Pd/PANI nanocomposites with high electrocatalytic activity for methane oxidation in acidic medium [J]. Mater. Res. Express, 2018, DOI: org/10.1088/2053-1591/aab79d
[19] Pan H B, Wai C M. Facile sonochemical synthesis of carbon nanotube-supported bimetallic Pt-Rh nanoparticles for room temperature hydrogenation of arenes [J]. New J. Chem., 2011, 35(8): 1649
[20] Hatchett D W, Millick N M, Kinyanjui J M, et al. The electrochemical reduction of PdCl42- and PdCl62-inpolyaniline: influence of Pd deposit morphology on methanol oxidationinal-kalinesolution [J]. Electrochim. Acta., 2011, 56(17): 6060
[21] Bakhshali M, Soghra F, Abdolhossein M, et al. Ag/polyaniline nanocomposites: Synthesize, characterization, and application to the detection of dopamine and tyrosine [J]. Appl. Polym. Sci., 2013, 130(4): 2780
[22] Xiong Y J, Chen J Y, Wiley B, et al. Optical properties of Pd-Ag and Pt-Ag nanoboxes synthesized via galvanic replacement reactions [J]. Nano. Lett., 2005, 5(10): 2058
[23] Islam R U, Witcomb M J, Scurrell M S, et al. In situ synthesis of a Pd-poly (1,8-diaminonaphthalene) nanocomposite: An efficient catalyst for Heck reactions under phosphine-free conditions [J]. Organomet.Chem., 2011, 12(2): 2206
[24] Zhang Q L, Feng J X, Wang A J, et al. Caffeine-assisted facile synthesis of platinum@palladium core-shell nanoparticles supported on reduced graphene oxide with enhanced electrocatalytic activity for methanol oxidation [J]. RSC. Adv., 2014, 4(95): 52640
[25] Wang H H. Caffeine-assisted facile synthesis of platinum@palladium core-shell nanoparticles supported on reduced graphene oxide with enhanced electrocatalytic activity for methanol oxidation [D]. Tianjin:Tianjin University, 2016
[25] (王慧慧. 贵金属钯纳米材料的制备及其电化学性能研究 [D]. 天津: 天津大学, 2016)
[26] Zhan Y C, Zhan L, Tian J N, et al. Enhanced electrocatalytic oxidation of methanol on Pd/polypyrrole-graphene in alkaline medium [J]. Electrochim. Acta., 2011, 56(5): 1967
[1] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] 刘瑞峰, 仙运昌, 赵瑞, 周印梅, 王文先. 钛合金/不锈钢复合板的放电等离子烧结技术制备及其性能[J]. 材料研究学报, 2023, 37(8): 581-589.
[3] 季雨辰, 刘树和, 张天宇, 查成. MXene在锂硫电池中应用的研究进展[J]. 材料研究学报, 2023, 37(7): 481-494.
[4] 王伟, 解泽磊, 屈怡珅, 常文娟, 彭怡晴, 金杰, 王快社. Graphene/SiO2 纳米复合材料作为水基润滑添加剂的摩擦学性能[J]. 材料研究学报, 2023, 37(7): 543-553.
[5] 张藤心, 王函, 郝亚斌, 张建岗, 孙新阳, 曾尤. 基于界面氢键结构的石墨烯/聚合物复合材料的阻尼性能[J]. 材料研究学报, 2023, 37(6): 401-407.
[6] 邵萌萌, 陈招科, 熊翔, 曾毅, 王铎, 王徐辉. C/C-ZrC-SiC复合材料的Si2+ 离子辐照行为[J]. 材料研究学报, 2023, 37(6): 472-480.
[7] 张锦中, 刘晓云, 杨健茂, 周剑锋, 查刘生. 温度响应性双面纳米纤维的制备和性能[J]. 材料研究学报, 2023, 37(4): 248-256.
[8] 王刚, 杜雷雷, 缪自强, 钱凯成, 杜向博文, 邓泽婷, 李仁宏. 聚多巴胺改性碳纤维增强尼龙6复合材料的界面性能[J]. 材料研究学报, 2023, 37(3): 203-210.
[9] 林师峰, 徐东安, 庄艳歆, 张海峰, 朱正旺. TiZr基非晶/TC21双层复合材料的制备和力学性能[J]. 材料研究学报, 2023, 37(3): 193-202.
[10] 苗琪, 左孝青, 周芸, 王应武, 郭路, 王坦, 黄蓓. 304不锈钢纤维/ZL104铝合金复合泡沫的孔结构、力学、吸声性能及其机理[J]. 材料研究学报, 2023, 37(3): 175-183.
[11] 张开银, 王秋玲, 向军. FeCo/SnO2 复合纳米纤维的制备及其吸波性能[J]. 材料研究学报, 2023, 37(2): 102-110.
[12] 周聪, 昝宇宁, 王东, 王全兆, 肖伯律, 马宗义. (Al11La3+Al2O3)/Al复合材料的高温性能及其强化机制[J]. 材料研究学报, 2023, 37(2): 81-88.
[13] 罗昱, 陈秋云, 薛丽红, 张五星, 严有为. 钠离子电池双层碳包覆Na3V2(PO4)3 正极材料的超声辅助溶液燃烧合成及其电化学性能[J]. 材料研究学报, 2023, 37(2): 129-135.
[14] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[15] 谢东航, 潘冉, 朱士泽, 王东, 刘振宇, 昝宇宁, 肖伯律, 马宗义. 增强颗粒尺寸对B4C/Al-Zn-Mg-Cu复合材料微观组织及力学性能的影响[J]. 材料研究学报, 2023, 37(10): 731-738.