Please wait a minute...
材料研究学报  2019, Vol. 33 Issue (2): 124-130    DOI: 10.11901/1005.3093.2018.395
  本期目录 | 过刊浏览 |
Co0.525Fe0.475MnP化合物的室温磁热效应和磁电阻效应
孙乃坤(),仲德晗,任增鑫,张扬,刘晓云()
沈阳理工大学理学院 沈阳 110159
Room-temperature Magnetocaloric Effect and Magneto-resistance Effect of Co0.525Fe0.475MnP Compound
Naikun SUN(),Dehan ZHONG,Zengxin REN,Yang ZHANG,Xiaoyun LIU()
School of Science, Shenyang Ligong University, Shenyang 110159, China
引用本文:

孙乃坤,仲德晗,任增鑫,张扬,刘晓云. Co0.525Fe0.475MnP化合物的室温磁热效应和磁电阻效应[J]. 材料研究学报, 2019, 33(2): 124-130.
Naikun SUN, Dehan ZHONG, Zengxin REN, Yang ZHANG, Xiaoyun LIU. Room-temperature Magnetocaloric Effect and Magneto-resistance Effect of Co0.525Fe0.475MnP Compound[J]. Chinese Journal of Materials Research, 2019, 33(2): 124-130.

全文: PDF(4913 KB)   HTML
摘要: 

采用多步骤固态烧结方法合成了具有单一Co2P相的Co0.525Fe0.475MnP化合物,其反铁磁有序温度在室温附近。在升温过程中,这种化合物经历两个连续的磁转变:在285 K发生反铁磁到铁磁的一级相变,在375 K发生由铁磁到顺磁的二级相变。在0~5 T的外磁场中,两个相变点温度对应的最大磁熵变分别为1.1 J/(kg·K)(303 K)和-2.0 J/(kg·K)(383 K)。外磁场为零时,随着温度的降低电阻率曲线在铁磁到反铁磁转变温度附近出现极小值,是铁磁有序与反铁磁有序的竞争所致。在35 K再次出现的电阻率极小值,可归因于由Fe替代Co引起的自旋无序所导致的金属-绝缘体转变。在5 T磁场中磁电阻率的最大值对应温度为200 K时的-2.5%,在反铁磁温度以上磁电阻率迅速减小。这表明,这种化合物的磁电阻效应源于外磁场对反铁磁有序的影响。

关键词 金属材料磁热效应磁电阻效应金属绝缘体转变一级相变    
Abstract

The Co0.525Fe0.475MnP compound of single-phase with Co2P-crystallographic structure was prepared by a multi-step solid sintering process. Co0.525Fe0.475MnP exhibits two successive magnetic transitions with the increasing temperature: a first-order magnetic phase transition from the antiferromagnetic (AF) to the ferromagnetic (FM) state at 285 K, and a second-order magnetic phase transition to the paramagnetic (PM) state at 375 K. The maximum value of magnetic-entropy change for a field change from 0 to 5 T is 1.1 J/(kg?K) at 303 K and -2.0 J/(kg?K) at 383 K. With the decreasing temperature, a minimum resistivity emerges near the TFM-AF originating from the competition between antiferromagnetism and ferromagnetism. The compound experiences a metal-insulator transition at 35 K, which can be ascribed to spin disorder due to the Fe substitution for Co. The value of maximum magnetoresistance ratio is -2.5% at 200 K in an external magnetic field of 5 T. Magnetoresistance value decreases rapidly above antiferromagnetic temperature, confirming that the magnetoresistance originates from the influence of external magnetic field on the antiferromagnetic state.

Key wordsmetallic materials    magnetocaloric effect    magneto-resistance effect    metal-insulator transition    first-order phase transition
收稿日期: 2018-06-18     
ZTFLH:  TM271.4  
基金资助:国家自然科学基金(51771197);沈阳理工大学激光与光信息技术辽宁省重点实验室开放基金(4771004kfs49)
作者简介: 孙乃坤,男,1970年生,副教授
图1  Co0.525Fe0.475MnP化合物的室温XRD图谱
xa/nmb/nmc/nmV/nm3TAF-FM/KTC/K
0.250.594560.352580.67397141.2843180[24]480[25]
0.350.594700.353390.67403141.6548218[24]450[25]
0.450.593910.353430.67278141.2203280[24]385[25]
0.4750.594490.353830.67334141.6360285375
表1  Co1-xFexMnP化合物的晶格常数和反铁磁-铁磁(TAF-FM)及铁磁到顺磁(TC)转变温度
图2  Co0.525Fe0.475Mn化合物的SEM照片
图3  Co0.525Fe0.475MnP化合物的零场冷(ZFC)和场冷(FC)磁化强度随温度的变化(插图为dM/dT曲线)
图4  Co0.525Fe0.475MnP分别在反铁磁-铁磁转变温度附近和居里温度附近的等温磁化曲线(插图分别为反铁磁-铁磁转变温度附近和居里温度附近的Arrott曲线)
图5  Co0.525Fe0.475MnP化合物的磁熵变随温度的变化
图6  Co0.525Fe0.475MnP化合物在零场和5 T磁场中电阻率随温度的变化(插图为5 T磁场下的dρ/dT曲线)及5 T磁场下磁电阻率随温度变化的曲线
[1] Pecharsky V K, Gschneidner Jr K A. Magnetocaloric effect and magnetic refrigeration [J]. Journal of Magnetism and Magnetic Materials, 1999, 200(1): 44
[2] Gao B B, Zhong X C, Zheng Z G, et al. Structure and large lagnetic entropy change of melt-spun La1-xCex(Fe0.92Co0.08)11.4Si1.6 alloys [J]. Chinese Journal of Materials Research, 2012, 26(5): 511
[2] (高贝贝, 钟喜春, 郑志刚等.熔体快淬La1-xCex(Fe0.92Co0.08)11.4Si1.6合金的结构和大磁熵变 [J]. 材料研究学报, 2012, 26(5): 511)
[3] Zhang T, Liu C, Zhang Y. Influence of hydrogen absorption and desorption on magnetocaloric effect of La0.6Pr0.4Fe11.4Si1.6B0.2 alloy [J]. Chinese Journal of Materials Research,2015, 29(11): 829
[3] (张 涛, 刘翠兰, 张 勇. 吸放氢处理对La0.6Pr0.4Fe11.4Si1.6B0.2合金磁热效应的影响 [J]. 材料研究学报, 2015, 29(11): 829)
[4] Zhang T B, Chen Y G, Tang Y B, et al. Recent developments and future directions of near room temperature magnetic refrigerant materials [J]. Journal of Functional Materials, 2007, 38(8): 1221
[4] (张铁邦, 陈云贵, 唐永柏等. 室温磁致冷材料的研究现状及发展趋势 [J]. 功能材料, 2007, 38(8): 1221)
[5] Jin P Y, Huang J H, Yang Z F, et al. Some new progresses on the magnetic refrigeration technology [J]. Chinese Rare Earths, 2014, 35(3): 101
[5] (金培育, 黄焦宏, 杨占峰等. 磁制冷技术的新进展 [J]. 稀土, 2014, 35(3): 101)
[6] Tegus O, Brück E, Buschow K H, et al. Transition-metal-based magnetic refrigerants for room-temperature applications [J]. Nature, 2002, 415(6868): 150
[7] Wada H, Morikawa T, Taniguchi K, et al. Giant magnetocaloric effect of MnAs1?xSbx in the vicinity of first-order magnetic transition [J]. Physica B: Condensed Matter, 2003, 328(1): 114
[8] Zhang H, Liu J, Zhang M X, et al. LaFe11.6Si1.4Hy/Sn magnetocaloric composites by hot pressing [J].Scripta Materialia,2016, 120: 58
[9] Liu Z G , Wu Q M, Sun N K, et al. Study of the microstructure, mechanical,and magnetic properties of LaFe11.6Si1.4Hy/Bi magnetocaloric composites [J]. Materials,2018, 11(6): 943
[10] Pecharsky V K, Gschneidner K A. Giant magnetocaloric effect in Gd5(Si2Ge2) [J]. Physical Review Letters,1997, 78(23): 4494
[11] Dan'Kov S Y, Tishin A M, Pecharsky V K, et al. Magnetic phase transitions and the magnetothermal properties of gadolinium [J]. Physical Review B,1998, 57(6): 3478
[12] Mandal K, Yan A, Kerschl P, et al. The study of magnetocaloric effect in R2Fe17 (R= Y, Pr) alloys [J]. Journal of Physics D: Applied Physics, 2004, 37(19): 2628
[13] Krenke T, Duman E, Acet M, et al. Inverse magnetocaloric effect in ferromagnetic Ni-Mn-Sn alloys [J]. Nature materials, 2005, 4(6): 450
[14] Du J, Cui W, Zhang B Q, et al. Giant magnetocaloric effect in ε-(Mn0.83Fe0.17)3.25Ge antiferromagnet [J]. Applied physics letters, 2007, 90(4): 2510
[15] Sun N K, Li Y, Liu F, et al. Magnetism and magnetocaloric properties of Mn3Zn1–xSnxC and Mn3–xCrxZnC compounds [J]. Journal of Materials Science & Technology, 2012, 28(10): 941
[16] Ma L, Guillou F, Yibole H, et al. Structural, magnetic and magnetocaloric properties of (Mn, Co)2(Si, P) compounds [J]. Journal of Alloys and Compounds, 2015, 625(S1): 95
[17] Baibich M. N., Broto J. M., Fert A., et al. Giant magnetoresistance of (001) Fe/(001) Cr magnetic superlattices [J]. Physical review letters, 1988, 61(21): 2472
[18] Zhang Y, Zhang Z. Metamagnetic-transition-induced giant magnetoresistance in Mn2Sb1?xSnx(0<x<0.4) compounds [J]. Physical Review B, 2003, 67(13): 132405
[19] Li Y B, Li W F, Feng W J, et al. Magnetic, transport and magnetotransport properties of Mn3+xSn1?xC and Mn3ZnySn1?yC compounds [J]. Physical Review B, 2005, 72(2): 024411
[20] Stankiewicz J, Bartolome J. Spin disorder scattering in magnetic metallic alloys [J]. Physical Review Letters, 2002, 89(10): 106602
[21] Cheng J G, Matsubayashi K, Wu W, et al. Pressure induced superconductivity on the border of magnetic order in MnP [J]. Physical review letters, 2015, 114(11): 117001
[22] Lin F K, Wu W, Fan G Z, et al. Low-temperature physical properties of MnP0.8B0.2 single crystals [J]. Acta Physica Sinica, 2015, 64(15): 157402
[22] (林富锟, 吴 伟, 范国志等. MnP0.8B0.2单晶样品的低温物性研究 [J]. 物理学报, 2015,64(15): 157402)
[23] Sun N K, Zhang Y Q, Li Y B, et al. Magnetic, electronic transport and magneto-transport behaviours of (Co1?xMnx)2P compounds [J]. Journal of Physics D: Applied Physics, 2006, 39(20): 4304
[24] Sun N K, Li Y B, Li D, et al. Magnetic, electronic transport and magneto-transport behaviors of CoxFe1?xMnP compounds [J]. Journal of Alloys and Compounds, 2007, 429(1): 29
[25] Sj?str?m J, H?ggstr?m L, Sundqvist T, A study of the magnetic structure and 57Fe hyperfine interactions in FeMnP [J]. Philosophical Magazine B,1988, 57(6): 737
[26] Fujii S, Ishida S, Asano S. Electronic structures and magnetic properties of Fe2P, Co2P and CoMnP [J]. Journal of Physics F: Metal Physics,1988, 18(5): 971
[27] ?redniawa B, Zach R, Fornala P, et al. Crystal structure, magnetic and electronic properties of CoxFe1?xMnP system [J]. Journal of Alloys and Compounds, 2001, 317-318: 266
[28] Sun N K, Du S J, Guo J. Effect of B-doping on microstructure and magnetic properties of SmFe10Mo2 alloy [J]. Chinese Journal of Materials Research, 2015, 29(1): 55
[28] (孙乃坤, 杜胜杰, 郭 杰. B掺杂对SmFe10Mo2合金的结构及磁性的影响 [J]. 材料研究学报,2015, 29(1): 55)
[29] Zhong X C, Gao B B, Wang S S,et al. Magnetic properties and large magnetocaloric effects of amorphous and crystallized Gd-Co binary alloys [J]. Journal of Functional Materials, 2014, 1(45): 111
[29] (钟喜春, 高贝贝, 王珊珊等. Gd-Co二元非晶及晶态合金的磁性和大磁热效应 [J]. 功能材料, 2014, 1(45): 111)
[30] Du H F, Du A, Hu Y. Monte carlo simulation of magnetic monolayer films [J]. Chinese Journal of Computational Physics, 2006, 23(5): 583
[30] (杜海峰, 杜 安, 胡 勇. 磁性单层膜磁学性质的Monte Carlo模拟 [J]. 计算物理, 2006, 23(5): 583)
[31] Zhang Q, Guillou F, Wahl A, et al. Coexistence of inverse and normal magnetocaloric effect in A-site ordered NdBaMn2O6 [J]. Applied Physics Letters, 2010, 96(24): 242506
[32] Sun N K, Xu S N, Gao Y B, et al. Magnetism and magnetocaloric properties of Mn0.95Cr0.05As [J]. Physica B: Condensed Matter, 2011, 406(14): 2731
[33] Chattopadhyay M K, Manekar M A, Roy S B, Magnetocaloric effect in CeFe2 and Ru-doped CeFe2 alloys [J]. Journal of Physics D: Applied Physics,2006, 39(6): 1006
[34] Hu Y, Li Z B, Yang B,et al. Combined caloric effects in a multiferroic Ni-Mn-Ga alloy with broad refrigeration temperature region [J]. Applied Physics Letters: Materials, 2017, 5(4): 046103
[35] Stankiewicz J, Bartolomé J, Morales M, et al. Resistivity of RMn12-xFex alloys, Journal of Applied Physics, 90(56), 32(2001)
[36] S. Alexander, S. Helman, J.I. Balberg, Critical behavior of the electrical resistivity in magnetic systems [J]. Physical Review B, 1976, 13(1): 304
[37] Balberg I, Helman J S, Critical behavior of the resistivity in magnetic systems. II. Below Tc and in the presence of a magnetic field [J]. Physical Review B, 1978, 18(1): 303
[38] Sampathkumaran E V, Sengupta K, Rayaprol S, et al. Enhanced electrical resistivity before Néel order in the metals RCuAs2 [J]. Physical Review B, 2003, 91(3): 036603
[39] Zhang Y S, Zeng H B. On the anomalies in some physical properties at the Neel transition of γ-Fe-Mn-Ge alloys [J]. Journal of Physics: Condensed Matter, 1990, 2(50): 10033
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] 刘天福, 张滨, 张均锋, 徐强, 宋竹满, 张广平. 缺口应力集中系数对TC4 ELI合金低周疲劳性能的影响[J]. 材料研究学报, 2023, 37(7): 511-522.