Please wait a minute...
材料研究学报  2019, Vol. 33 Issue (2): 103-108    DOI: 10.11901/1005.3093.2018.391
  本期目录 | 过刊浏览 |
淬火速率对汽车用高强铝合金性能的影响
李承波1,2(),邓运来1,唐建国1,李建湘2,张新明1
1. 中南大学材料科学与工程学院 长沙 410083
2. 广东和胜工业铝材股份有限公司 中山 528463
Effect of Quenching Rate on Properties of Automotive High Strength Al-alloy
Chengbo LI1,2(),Yunlai DENG1,Jianguo TANG1,Jianxiang LI2,Xinming ZHANG1
1. School of Materials Science and Engineering, Central South University, Changsha 410083, China
2. Guangdong Hoshion Industrial Aluminium Co. Ltd., Zhongshan 528463, China
引用本文:

李承波,邓运来,唐建国,李建湘,张新明. 淬火速率对汽车用高强铝合金性能的影响[J]. 材料研究学报, 2019, 33(2): 103-108.
Chengbo LI, Yunlai DENG, Jianguo TANG, Jianxiang LI, Xinming ZHANG. Effect of Quenching Rate on Properties of Automotive High Strength Al-alloy[J]. Chinese Journal of Materials Research, 2019, 33(2): 103-108.

全文: PDF(9566 KB)   HTML
摘要: 

采用力学性能测试、电导率测试和透射电子显微镜研究了淬火速率对汽车用高强铝合金性能的影响。结果表明:淬火速率从960℃/s降低到1.8℃/s,电导率提高了5.7% IACS,硬度的下降率为40%,抗拉强度和屈服强度的下降率分别为24.2%和56.9%,硬度和强度与淬火速率的对数呈线性关系。随着淬火速率的降低,淬火析出相的尺寸和面积分数显著增大,导致性能下降。淬火速率为1.8℃/s时,淬火析出相的平均尺寸为465.6 nm×158.2 nm,析出相的面积分数为42.1%。

关键词 金属材料高强铝合金汽车淬火速率显微组织    
Abstract

The effect of quenching rate on the microstructure and properties of automotive high-strength Al-alloys were investigated by mechanical property testing, electrical conductivity measurement and transmission electron microscopy. The results show that as the quenching rate decreased from 960oC/s to 1.8oC/s, the electrical conductivity increased by 5.7% IACS, the hardness reduction rate is 40%, and the reduction rates of tensile strength and yield strength are 24.2% and 56.9%, respectively. The hardness and strength are linearly related to the logarithm of quenching rate. With the decrease of quenching rate, the size and area fraction of quenching precipitates increase significantly, resulting in the decrease of performance. When the quenching rate is 1.8oC/s, the average size and the area fraction of the quenching precipitate are 465.6 nm×158.2 nm and 42.1%, respectively.

Key wordsmetallic materials    high-strength aluminum alloys    automobile    quenching rate    micro-structure
收稿日期: 2018-06-13     
ZTFLH:  TG146.2  
基金资助:国家重点研发计划(2016YFB0300900);国家自然科学基金(51474240);中山市科技局重大专项(2016A1001)
作者简介: 李承波,男,1987年生,博士
图1  不同淬火速率样品的电导率
图2  不同淬火速率样品的硬度
图3  淬火速率对拉伸强度和延伸率的影响
图4  淬火速率对晶内析出相的影响
图5  淬火速率对晶内析出相的尺寸和面积分数影响(L—长度,T—厚度)
图6  淬火析出相的尺寸和面积分数对电导率的影响
图7  淬火析出相的尺寸和面积分数对硬度和强度的影响
[1] Heinz A, Haszler A, Keidel C. Recent development inaluminum alloys for aerospace applications [J]. Mater. Sci. Eng. A, 2000, 280(3): 102
[2] He Z B,Fan X B,Yuan S J. Review of hot forming-quenching integrated process of aluminum alloy [J]. J. Net. forming Eng., 2014, 6(5): 37
[2] (何祝斌, 凡晓波, 苑世剑. 铝合金板材热成形—淬火一体化工艺研究进展 [J]. 精密成形工程, 2014, 6(5): 37)
[3] Liu S D, Li C B, Zhang X M. Effect of natural aging on quench-induced inhomogeneity of microstructure and hardness in high strength 7055 aluminum alloy [J]. J. Alloys Compd., 2015, 625: 34
[4] Zhang X M, Liu W J, Liu S D. Effect of processing parameters on quench sensitivity of an AA7050 sheet [J]. Mater. Sci. Eng. A, 2011, 528: 795
[5] Lima S T, Yun S J, Namb S W. Improved quench sensitivity in modi?ed aluminum alloy 7175 for thickforging applications [J]. Mater. Sci. Eng. A, 2004, 371(1/2): 82
[6] Zhang Y. Quench sensitivity of 7xxx series aluminium alloys [D]. Melbourne: Monash University, 2014
[7] Liu W J. The research about the quench induced precipitation and quenching sensitivty of Al-Zn-Mg-Cu alloys [D]. Changsha: Central South University, 2011
[7] (刘文军. Al-Zn-Mg-Cu铝合金淬火析出行为及淬火敏感性研究 [D]. 长沙: 中南大学, 2011)
[8] Liu S D, Zhang X M, Huang Z B. Effects of quenching rates on microstructure and mechanical properties of 7055 aluminum alloy [J]. Mater. Sci. Tec., 2008, 12 (5): 650
[8] (刘胜胆, 张新明, 黄振宝. 淬火速率对7055铝合金组织和力学性能的影响 [J]. 材料科学与工艺, 2008, 12 (5): 650)
[9] Li C B, Zhang X M, Liu S D, Quench sensitivity relative to exfoliation corrosion of 7085 aluminum alloy [J]. Chin J. Mater. Res.,2013, 27(5): 454
[9] (李承波, 张新明, 刘胜胆. 7085铝合金剥落腐蚀的淬火敏感性[J].材料研究学报, 2013, 27(5) :454)
[10] Chen S Y, Chen K H, Peng G S, et al. Effect of hot deformation temperature and quench rate on microstructure and property of 7085 aluminum alloy [J]. Chin. J. Nonferrous Met., 2012, 22(4): 1033
[10] (陈送义, 陈康华, 彭国胜等. 热变形温度和淬火速率对7085 铝合金组织和性能的影响 [J]. 中国有色金属学报, 2012, 22(4): 1033)
[11] Chen S Y, Chen K H, Peng G S, et al. Effect of quenching rate on microstructure and stress corrosion cracking of 7085 aluminum alloy [J]. Trans. Nonferrous Metals Soc. China, 2012, 22(1): 47
[12] Li C B, Zhang X M, Liu S D. Hardenability of four homogenized Al-Zn-Mg-Cu aluminum alloys [J]. Cent. J. South Univ. Technol.,2017, 48(7): 1712
[12] (李承波, 张新明, 刘胜胆. 4种均匀化态Al-Zn-Mg-Cu合金的淬透性 [J].中南大学学报(自然科学版), 2017, 48(7): 1712)
[13] Liu S D, Li C B, OuYang H, et al. Quench sensitivity of ultra-high strength 7000 series aluminum alloys [J]. Chin. J. Nonferrous Met., 2013, 23(4):927
[13] (刘胜胆, 李承波, 欧阳惠等. 超高强7000系铝合金的淬火敏感性 [J]. 中国有色金属学报, 2013, 23(4): 927)
[14] Li C B, Liu S D, Zhang X M. Effect of Zener-Hollomon parameter on quench sensitivity of 7085 aluminum alloy [J]. J. Alloys Compd., 2016, 688: 456
[15] Zhang X M, Zhang D Z, Liu S D, et al. Hardenability of three 7000 series aluminum alloys based on Jominy end quench test [J]. Cent. J. South Univ. Technol., 2015, 46(2): 421
[15] (张新明, 张端正, 刘胜胆等. 基于末端淬火试验研究3种7000 系铝合金的淬透性 [J]. 中南大学学报(自然科学版), 2015,46(2): 421)
[16] Tang J G, Chen H, Zhang X M, et al. Influence of quench-induced precipitation on aging behavior of Al-Zn-Mg-Cu alloy [J]. Trans. Nonferrous Metals Soc. China, 2012, 22(6): 1255
[17] Godard D, Archambault P, Aeby-Gautier E, et al. Precipitation sequences during quenching of the AA7010 alloy [J]. Act Mater. 2002, 50(9): 2319
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[8] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[9] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[10] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[11] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[12] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[13] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[14] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[15] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.