Please wait a minute...
材料研究学报  2019, Vol. 33 Issue (3): 218-224    DOI: 10.11901/1005.3093.2018.380
  本期目录 | 过刊浏览 |
锻态TB6钛合金β相区压缩变形行为和动态再结晶
欧阳德来,崔霞(),鲁世强,徐勇
南昌航空大学 轻合金加工科学与技术国防重点学科实验室 南昌 330063
Hot Compressive Deformation and Dynamic Recrystallization of As-Forged Ti-Alloy TB6 During β Process
Delai OUYANG,Xia CUI(),Shiqiang LU,Yong XU
National Defense Key Disciplines Laboratory of Light Alloy Processing Science and Technology, Nanchang Hangkong University, Nanchang 330063, China
引用本文:

欧阳德来,崔霞,鲁世强,徐勇. 锻态TB6钛合金β相区压缩变形行为和动态再结晶[J]. 材料研究学报, 2019, 33(3): 218-224.
Delai OUYANG, Xia CUI, Shiqiang LU, Yong XU. Hot Compressive Deformation and Dynamic Recrystallization of As-Forged Ti-Alloy TB6 During β Process[J]. Chinese Journal of Materials Research, 2019, 33(3): 218-224.

全文: PDF(9847 KB)   HTML
摘要: 

使用圆柱形试样在Thermecmaster-Z型热模拟试验机上进行锻态TB6钛合金β相区的热压缩实验(变形温度950~1100℃,应变速率0.001~1 s-1),研究了合金的高温压缩变形和动态再结晶行为。结果表明,这种合金在β相区的变形激活能为246.7 kJ/mol,其热变形机制是动态再结晶,动态再结晶新晶粒的主要形核机制是弓弯形核。当应变速率为0.01~0.1 s-1、变形温度为<1000℃时动态再结晶的发展比较充分,变形组织明显细化;当变形温度高于1000℃、应变速率低于0.001 s-1时,动态再结晶的晶粒明显粗化。在动态再结晶的晶粒尺寸D与Z参数之间存在着相关性,其函数关系为D=6.44×102·Z-0.1628

关键词 金属材料锻态TB6钛合金β相区热变形行为动态再结晶    
Abstract

Hot compression tests of the as-forged Ti-alloy TB6 were conducted by means of thermecmaster-Z hot simulation test machine in temperature range of 950~1100oC with strain rate of 0.001~1 s-1 aiming to reveal its characters of hot compressive deformation behavior and dynamic recrystallization (DRX). Results show that the deformation activation energy of the alloy in the beta phase region is 246.7 kJ/mol; the deformation mechanism of this alloy in hot deformation is dominated by DRX, and the predominant nucleation mechanism for the growth of new grains of DRX may be ascribed to bulging nucleation. Completely dynamic recrystallization can be reached at strain rate of 0.01~0.1 s-1 and temperature below 1000oC, resulting in grain refinement of deformed microstructure. DRX grain coarsening was observed for the alloy deformed at temperatures above 1000oC and strain rates below 0.001 s-1. DRX grain size relate to Z parameter, which can be described by a function of D=6.44×102·Z -0.1628.

Key wordsas-forged titanium alloy TB6    β process    hot compressive deformation behavior    dynamic recrystallization
收稿日期: 2018-06-09     
ZTFLH:  TG146.4  
基金资助:国家自然科学基金(51761029);江西省自然科学基金(20161BAB206108);江西省教育厅科学基金(GJJ160683);轻合金加工科学与技术国防重点学科实验室开放基金(gf201401007)
作者简介: 欧阳德来,男,1977年生,博士,副教授
图1  锻态TB6钛合金棒材的金相组织
图2  锻态TB6钛合金在不同热变形条件下的应力-应变曲线
图3  在变形温度为825℃、应变速率为0.01 s-1条件下不同应变的金相组织
图4  锻态TB6钛合金在不同热变形条件下的金相组织(ε=1.61)
图5  锻态TB6钛合金在不同变形温度条件下的lnε˙与ln(σp)和lnε˙与σp之间的关系曲线
图6  锻态TB6钛合金的(a) lnε˙和ln(sinh(ασp))及(b) ln(sinh(ασp))和1/T关系
图7  动态再结晶的晶粒尺寸与应变速率和变形温度的关系
图8  动态再结晶的晶粒尺寸D与Z的关系
[1] MaC, WangG C. Superplastic tensile experiment by the fixed m value method at high-temperature for titanium alloy TB6 [J]. Forg. Stamp. Technol., 2016, 41(10): 88
[1] (马 超, 王高潮. TB6钛合金定m值法高温超塑性拉伸试验研究 [J]. 锻压技术, 2016, 41(10): 88)
[2] G?kenJ, FayedS, SkubiszP. Strain-dependent damping of Ti-10V-2Fe-3Al at room temperature [J]. Acta Phys. Pol., 2016, 130: 1352
[3] IllarionovA G, TrubochkinA V, ShalaevA M, et al. Isothermal decomposition of β-Solid solution in titanium Alloy Ti-10 V-2Fe-3Al [J]. Met. Sci. Heat Treat., 2017, 58: 674
[4] WuJ F, ZouS K, ZhangY K, et al. Microstructures and mechanical properties of β forging Ti17 alloy under combined laser shock processing and shot peening [J]. Surf. Coat. Technol., 2017, 328: 283
[5] SunZ C, WuH L, SunQ F, et al. Tri-modal microstructure in high temperature toughening and low temperature strengthening treatments of near-β forged TA15 Ti-alloy [J]. Mater. Charact., 2016, 121: 213
[6] SavvakinD G, CarmanA, IvasishinO M, et al. Effect of iron content on sintering behavior of Ti-V-Fe-Al Near-β titanium alloy [J]. Metall. Mater. Trans., 2012, 43A: 716
[7] ZhangZ X, QuS J, FengA H, et al. Achieving grain refinement and enhanced mechanical properties in Ti-6Al-4V alloy produced by multidirectional isothermal forging [J]. Mater. Sci. Eng., 2017, 692A: 127
[8] HuangS, WangL, ZhangB J, et al. Dynamic recrystallization behavior and grain size control of GH4706 superalloy [J]. Chin. J. Mater. Res., 2014, 28: 362
[8] (黄 烁, 王 磊, 张北江等. GH4706合金的动态再结晶与晶粒控制 [J]. 材料研究学报, 2014, 28: 362)
[9] GuoZ, MiodownikA P, SaundersN, et al. Influence of stacking-fault energy on high temperature creep of alpha titanium alloys [J]. Scripta Mater., 2006, 54: 2175
[10] LiuL J, LvM, WuW G. Dynamic recrystallization of Ti-6Al-4V during hot deformation [J]. Hot Work. Technol., 2014, 43(24): 1
[10] (刘丽娟, 吕 明, 武文革. 钛合金Ti-6Al-4V热变形中的动态再结晶研究 [J]. 热加工工艺, 2014, 43(24): 1)
[11] YangL Q, YangY Q. Deformed microstructure and texture of Ti6Al4V alloy [J]. Trans. Nonferr. Met. Soc. China, 2014, 24: 3103
[12] BaoR Q, HuangX, CaoC X. Deformation behavior and mechanisms of Ti-1023 alloy [J]. Trans. Nonferr. Met. Soc., 2006, 16: 274
[13] OuyangD L, FuM W, LuS Q. Study on the dynamic recrystallization behavior of Ti-alloy Ti-10V-2Fe-3V in β processing via experiment and simulation [J]. Mater. Sci. Eng., 2014, 619A: 26
[14] ZhaoY Q, ZhouL, DengJ. High temperature deformation mechanism of Ti-40 burn resistant titanium alloy as-annealing [J]. Rare Met., 1999, 18: 203
[15] FanJ K, KouH C, TangB, et al. Dynamic recrystallization behavior of Ti-7333 alloy in the β hot process [J]. Sci. Technol. Rev., 2013, 31(5): 44
[15] (樊江昆, 寇宏超, 唐 斌等. Ti-7333合金β锻动态再结晶行为 [J]. 科技导报, 2013, 31(5): 44)
[16] WangG, HuiS X, YeW J, et al. Hot compressive behavior of Ti-3.0Al-3.7Cr-2.0Fe-0.1B titanium alloy [J]. Trans. Nonferr. Met. Soc., 2012, 22: 2965
[17] ZhaoJ, ZhongJ, YanF, et al. Deformation behaviour and mechanisms during hot compression at supertransus temperatures in Ti-10V-2Fe-3Al [J]. J. Alloy. Compd., 2017, 710: 616
[18] LiC W, XieH, MaoX N, et al. High temperature deformation of TC18 titanium alloy [J]. Rare Met. Mater. Eng., 2017, 46: 326
[19] OuyangD L, LuS Q, CuiX, et al. Transformation of deformation-induced martensite in TB6 titanium alloy [J]. The Chin. J. Nonferr. Met., 2010, 20: 2307
[19] (欧阳德来, 鲁世强, 崔 霞等. TB6钛合金热变形诱导马氏体转变 [J]. 中国有色金属学报, 2010, 20: 2307)
[20] SellarsC M, MctegartW J. On the mechanism of hot deformation [J]. Acta Metall., 1966, 14: 1136
[21] HuangS Q, YiY P, LiP C. High temperature deformation behavior of 23Co13Ni11Cr3Mo ultrahigh strength steel [J]. Chin. J. Mater. Res., 2011, 25(3): 283
[21] (黄始全, 易幼平, 李蓬川. 23Co13Ni11Cr3Mo超高强钢的高温变形行为 [J]. 材料研究学报, 2011, 25(3): 283)
[22] ChenJ, TangS, ZhouY L, et al. Dynamic recrystallization behaviors of low carbon Q690qENH high-strength bridge steels [J]. Chin. J. Mater. Res., 2012, 26(2): 199
[22] (陈 俊, 唐 帅, 周砚磊等. 低碳Q690qENH高强桥梁钢的动态再结晶行为 [J]. 材料研究学报, 2012, 26(2): 199)
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] 刘天福, 张滨, 张均锋, 徐强, 宋竹满, 张广平. 缺口应力集中系数对TC4 ELI合金低周疲劳性能的影响[J]. 材料研究学报, 2023, 37(7): 511-522.