Please wait a minute...
材料研究学报  2019, Vol. 33 Issue (3): 185-190    DOI: 10.11901/1005.3093.2018.374
  本期目录 | 过刊浏览 |
氮流量比对磁控溅射(CoCrFeNi)Nx高熵合金薄膜的组织和性能的影响
刘晓东1,谈淑咏2,霍文燚1,张旭海1,邵起越1,方峰1()
1. 东南大学 江苏省先进金属材料高技术研究重点实验室 南京 211189
2. 南京工程学院材料工程学院 南京 211167
Effect of Nitrogen Flow Ratio on Microstructure and Property of High-Entropy Alloy Films (CoCrFeNi)Nx Prepared by Magnetron Sputtering
Xiaodong LIU1,Shuyong TAN2,Wenyi HUO1,Xuhai ZHANG1,Qiyue SHAO1,Feng FANG1()
1. Jiangsu Key Laboratory of Advanced Metallic Materials, Southeast University, Nanjing, 211189, China
2. School of Materials Science and Engineering, Nanjing Institute of Technology, Nanjing 211167, China
引用本文:

刘晓东,谈淑咏,霍文燚,张旭海,邵起越,方峰. 氮流量比对磁控溅射(CoCrFeNi)Nx高熵合金薄膜的组织和性能的影响[J]. 材料研究学报, 2019, 33(3): 185-190.
Xiaodong LIU, Shuyong TAN, Wenyi HUO, Xuhai ZHANG, Qiyue SHAO, Feng FANG. Effect of Nitrogen Flow Ratio on Microstructure and Property of High-Entropy Alloy Films (CoCrFeNi)Nx Prepared by Magnetron Sputtering[J]. Chinese Journal of Materials Research, 2019, 33(3): 185-190.

全文: PDF(3304 KB)   HTML
摘要: 

采用直流磁控溅射法制备(CoCrFeNi)Nx高熵薄膜,研究了氮流量比对薄膜的力学性能和电磁性能的影响。结果表明,在不同氮流量比条件下制备的(CoCrFeNi)Nx薄膜,都具有致密的组织、简单的FCC结构并呈现(200)择优取向。随着氮流量比从10%提高到30%,薄膜的硬度和弹性模量随之增大,其最大值达到14 GPa和212 GPa;电阻率基本上呈增大的趋势,最大值达到138 μΩ?cm;饱和磁化强度和磁导率随之减小,薄膜饱和磁化强度最高为427.43 emu/cm3。薄膜的矫顽力约为0。

关键词 磁控溅射(CoCrFeNi)Nx材料表面与界面硬度电阻率磁性能    
Abstract

High-entropy alloy films of (CoCrFeNi)Nx were prepared by direct current magnetron sputtering. The effect of nitrogen flow ratio on the microstructure, mechanical-, electrical- and magnetic- properties of the films were investigated. The results show that all dense (CoCrFeNi)Nx films prepared with different nitrogen flow ratio all consist of simple single face-centered cubic phase with (200) preferred orientation. With the increase of nitrogen flow ratio from 0 to 30%, both the hardness and elasticity modulus increase. The max values of the hardness and elasticity modulus are 14 GPa and 212 GPa, respectively. The resistivity of (CoCrFeNi)Nx films increases with the increasing nitrogen flow ratio, while the saturation magnetization and permeability decrease. The max value of the resistivity is 138 μΩ?cm, the highest saturation magnetization is 427.43 emu/cm3, and the coercivity remains around 0.

Key wordssurface and interface in the materials    magnetron sputtering    (CoCrFeNi)Nx    hardness    resistivity    magnetic properties
收稿日期: 2018-06-06     
ZTFLH:  TB43  
基金资助:国家自然科学基金项目(51371050);江苏省产学研前瞻性研究项目(BY2016076-08);江苏省六大人才高峰项目(2015-XCL-004);张家港市重点研发项目(ZKG1614);江苏省先进结构材料与应用技术重点实验室开放基金(ASMA201708)
作者简介: 刘晓东,女,1994年生,硕士生
Nitrogen flow ratioCoCrFeNiN
RN=10%22.2420.6415.6529.4711.99
RN=20%20.1119.0714.5228.1118.18
RN=30%18.9117.9014.6526.7921.75
表1  氮流量比不同的薄膜的成分
图1  氮流量比不同的(CoCrFeNi)Nx高熵合金薄膜的XRD衍射谱
图2  氮流量比不同的(CoCrFeNi)Nx薄膜的晶格参数和晶粒尺寸
图3  氮流量比不同的(CoCrFeNi)Nx薄膜的表面形貌
图4  氮流量比不同的(CoCrFeNi)Nx薄膜的AFM形貌图
图5  氮流量比不同的(CoCrFeNi)Nx薄膜的截面形貌
图6  (CoCrFeNi)Nx薄膜沉积速率与氮流量比的关系
图7  (CoCrFeNi)Nx薄膜硬度和弹性模量与氮流量比的关系
图8  (CoCrFeNi)Nx薄膜电阻率与氮流量比的关系
图9  (CoCrFeNi)Nx薄膜的磁性与氮流量比的关系
[1] YehJ W, ChenS K, LinS J, et al. Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes [J]. Adv. Eng. Mater., 2004, 6: 299
[2] ZhangY. Amorphous and High-entropy Alloys [M]. Beijing: Science Press, 2010
[2] (张 勇. 非晶和高熵合金 [M]. 北京: 科学出版社, 2010
[3] WuW H, YangC C, YehJ W. Industrial development of high-entropy alloys [J]. Ann. Chim. Sci. Mat., 2006, 31: 737
[4] WangJ, HuangW G. Microstructure and mechanical properties of CrMoVNbFex high-entropy alloys [J]. Chin. J. Mater. Res., 2016, 30: 609
[4] (王 江, 黄维刚. CrMoVNbFex高熵合金微观组织结构与力学性能 [J]. 材料研究学报, 2016, 30: 609)
[5] ZhangY, LuZ P, MaS G, et al. Guidelines in predicting phase formation of high-entropy alloys [J]. MRS Commun., 2014, 4: 57
[6] SinghS, WanderkaN, MurtyB S, et al. Decomposition in multi-component AlCoCrCuFeNi high-entropy alloy [J]. Acta Mater., 2011, 59: 182
[7] TungC C, YehJ W, ShunT T, et al. On the elemental effect of AlCoCrCuFeNi high-entropy alloy system [J]. Mater. Lett., 2007, 61: 1
[8] DoliqueV, ThomannA L, BraultP, et al. Complex structure/composition relationship in thin films of AlCoCrCuFeNi high entropy alloy [J]. Mater. Chem. Phys., 2009, 117: 142
[9] BraeckmanB R, BoydensF, HidalgoH, et al. High entropy alloy thin films deposited by magnetron sputtering of powder targets [J]. Thin Sol. Film, 2015, 580: 71
[10] BraeckmanB R, MisjákF, RadnócziG, et al. The influence of Ge and In addition on the phase formation of CoCrCuFeNi high-entropy alloy thin films [J]. Thin Sol. Film, 2016, 616: 703
[11] PraveenS, BasuJ, KashyapS, et al. Exceptional resistance to grain growth in nanocrystalline CoCrFeNi high entropy alloy at high homologous temperatures [J]. J. Alloy. Compd., 2015, 662: 361
[12] HuoW Y, ZhouH, FangF, et al. Strain-rate effect upon the tensile behavior of CoCrFeNi high-entropy alloys [J]. Mater. Sci. Eng., 2017, 689A: 366
[13] BraeckmanB R, DeplaD. Structure formation and properties of sputter deposited Nbx-CoCrCuFeNi high entropy alloy thin films [J]. J. Alloy. Compd., 2015, 646: 810
[14] ChangS Y, LinS Y, HuangY C. Microstructure and mechanical properties of multi-component (AlCrTaTiZr) NxCy nanocomposite coatings [J]. Thin Sol. Film, 2011, 519: 4865
[15] BraicV, BalaceanuM, BraicM, et al. Characterization of multi-principal-element (TiZrNbHfTa)N and (TiZrNbHfTa)C coatings for biomedical applications [J]. J. Mech. Behav. Biom. Mater., 2012, 10: 197
[16] TsaiD C, DengM J, ChangZ C, et al. Oxidation resistance and characterization of (AlCrMoTaTi)-Six-N coating deposited via magnetron sputtering [J]. J. Alloy. Compd., 2015, 647: 179
[17] ChangH W, HuangP K, DavisonA, et al. Nitride films deposited from an equimolar Al-Cr-Mo-Si-Ti alloy target by reactive direct current magnetron sputtering [J]. Thin Sol. Film, 2008, 516: 6402
[18] LiuL, ZhuJ B, HouC, et al. Dense and smooth amorphous films of multicomponent FeCoNiCuVZrAl high-entropy alloy deposited by direct current magnetron sputtering [J]. Mater. Des., 2013, 46: 675
[19] ChenT K, ShunT T, YehJ W, et al. Nanostructured nitride films of multi-element high-entropy alloys by reactive DC sputtering [J]. Surf. Coat. Technol., 2004, 188-189: 193
[20] LinP C, ChengC Y, YehJ W, et al. Soft magnetic properties of high-entropy Fe-Co-Ni-Cr-Al-Si thin films [J]. Entropy, 2016, 18: 308
[21] YuY, LiuW M, ZhangT B, et al. Microstructure and tribological properties of AlCoCrFeNiTi0.5 high-entropy alloy in hydrogen peroxide solution [J]. Metall. Mater. Trans., 2014, 45A: 201
[22] YangD, JonnalagaddaR, RogersB R. Texture and surface roughness of PRCV D aluminum films [J]. Thin Sol. Film, 1998, 332: 312
[23] ChandraR, ChawlaA K, KaurD, et al. Structural, optical and electronic properties of nanocrystalline TiN films [J]. Nanotechnology, 2005, 16: 3053
[24] TianM B, LiZ C. Thin Film Technology and Thin Film Materials [M]. Beijing: Peking University Press, 2011
[24] (田民波, 李正操. 薄膜技术与薄膜材料 [M]. 北京: 清华大学出版社, 2011)
[25] RenB, ShenZ G, LiuZ X. Structure and mechanical properties of multi-element (AlCrMnMoNiZr)Nx coatings by reactive magnetron sputtering [J]. J. Alloy. Compd., 2013, 560: 171
[26] TianM B. Magnetic Materials [M]. Beijing: Peking University Press, 2001
[26] (田民波. 磁性材料 [M]. 北京: 清华大学出版社, 2001)
[27] TangW, DengL J, XuK W. Relationship between resistivity of metallic film and its surface roughness, residual stress [J]. Rare Met. Mat. Eng., 2008, 37: 617
[27] (唐 武, 邓龙江, 徐可为. 金属薄膜电阻率与表面粗糙度、残余应力的关系 [J]. 稀有金属材料与工程, 2008, 37: 617)
[1] 王乾, 蒲磊, 贾彩霞, 李志歆, 李俊. 碳纤维/环氧复合材料界面改性的不均匀性[J]. 材料研究学报, 2023, 37(9): 668-674.
[2] 陆益敏, 马丽芳, 王海, 奚琳, 徐曼曼, 杨春来. 脉冲激光沉积技术生长铜材碳基保护膜[J]. 材料研究学报, 2023, 37(9): 706-712.
[3] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[4] 冯叶, 陈志勇, 姜肃猛, 宫骏, 单以银, 刘建荣, 王清江. 一种NiCrAlSiY涂层对Ti65钛合金板材循环氧化和室温力学性能的影响[J]. 材料研究学报, 2023, 37(7): 523-534.
[5] 闫春良, 郭鹏, 周靖远, 汪爱英. Cu掺杂非晶碳薄膜的电学性能及其载流子输运行为[J]. 材料研究学报, 2023, 37(10): 747-758.
[6] 陈开旺, 张鹏林, 李树旺, 牛显明, 胡春莲. 莫来石粉末化学镀镍和涂层的高温摩擦学性能[J]. 材料研究学报, 2023, 37(1): 39-46.
[7] 单位摇, 王永利, 李静, 熊良银, 杜晓明, 刘实. 锆合金表面Cr基涂层的耐高温氧化性能[J]. 材料研究学报, 2022, 36(9): 699-705.
[8] 程红杰, 刘黄娟, 姜婷, 王法军, 李文. 近红外反射超疏水黄色涂层的制备和性能[J]. 材料研究学报, 2022, 36(9): 687-698.
[9] 张鹏, 黄东, 张福全, 叶崇, 伍孝, 吴晃. 中间相沥青基碳纤维石墨化度对Cf/Al界面损伤的影响[J]. 材料研究学报, 2022, 36(8): 579-590.
[10] 孟祥东, 甄超, 刘岗, 成会明. CuO纳米阵列结构光阴极的制备及其光电化学分解水的性能[J]. 材料研究学报, 2022, 36(4): 241-249.
[11] 张红亮, 赵国庆, 欧军飞, Amirfazli Alidad. 基于聚多巴胺的超疏水棉织物的一锅法制备及其油水分离性能[J]. 材料研究学报, 2022, 36(2): 114-122.
[12] 崔丽, 孙丽丽, 郭鹏, 马鑫, 王舒远, 汪爱英. 沉积时间对聚醚醚酮表面类金刚石薄膜的结构和性能的影响[J]. 材料研究学报, 2022, 36(11): 801-810.
[13] 李建中, 朱博轩, 王振宇, 赵静, 范连慧, 杨柯. 输尿管支架表面化学接枝镀铜涂层及其性能[J]. 材料研究学报, 2022, 36(10): 721-729.
[14] 张钧, 彭立静, 王宇, 王晓阳, 王楠, 王美涵. Al/Ti摩尔比对(CrTiAl)N硬质膜相结构和硬度的影响[J]. 材料研究学报, 2022, 36(1): 55-61.
[15] 李蕊, 王浩, 张天刚, 牛伟. Ti811合金表面激光熔覆Ti2Ni+TiC+Al2O3+CrxSy复合涂层的组织和性能[J]. 材料研究学报, 2022, 36(1): 62-72.