Please wait a minute...
材料研究学报  2018, Vol. 32 Issue (9): 697-705    DOI: 10.11901/1005.3093.2018.352
  本期目录 | 过刊浏览 |
Cu对Mg-7Zn-0.6Zr合金流动性的影响
周野, 毛萍莉(), 杨博莘, 王志, 周乐, 刘正, 王峰
沈阳工业大学材料科学与工程学院 沈阳 110870
Effect of Cu Content on Fluidity of Mg-7Zn-0.6Zr Alloys
Ye ZHOU, Pingli MAO(), Boshen YANG, Zhi WANG, Le ZHOU, Zheng LIU, Feng WANG
School of Materials Science and Engineering, Shenyang University of Technology, Shenyang 110870, China
引用本文:

周野, 毛萍莉, 杨博莘, 王志, 周乐, 刘正, 王峰. Cu对Mg-7Zn-0.6Zr合金流动性的影响[J]. 材料研究学报, 2018, 32(9): 697-705.
Ye ZHOU, Pingli MAO, Boshen YANG, Zhi WANG, Le ZHOU, Zheng LIU, Feng WANG. Effect of Cu Content on Fluidity of Mg-7Zn-0.6Zr Alloys[J]. Chinese Journal of Materials Research, 2018, 32(9): 697-705.

全文: PDF(5849 KB)   HTML
摘要: 

使用流动性模具研究了Cu含量对Mg-7Zn-xCu-0.6Zr(x=0,1,2,3)合金流动性的影响。用双电偶差热分析法分析了合金凝固过程中的凝固区间和枝晶相干温度等参数,根据TEM鉴别了合金的微观物相,并结合SEM和EPMA观察了合金的显微组织。基于理论预测和流动性实验测试研究了Mg-7Zn-xCu-0.6Zr(x=0,1,2,3)合金的流动性。结果表明,随着Cu的加入在Mg-7Zn-0.6Zr合金中析出MgZnCu共晶组织,使晶粒细化、凝固区间减小、枝晶相干温度降低、枝晶生长速率降低和合金流动性提高。

关键词 金属材料Mg-Zn-Cu-Zr合金凝固行为流动性枝晶生长速率    
Abstract

Mg-Zn-Cu ternary alloys were draw much attention in recent years for its good high temperature performance. However, the fluidity plays a key role in the castability of Mg alloys. Therefore, the hot tearing susceptibility of Mg-7Zn-xCu-0.6Zr (x=0,1,2,3) alloys was investigated by means of a home-made mould for casting fluidity measurement and cooling curve thermal analysis. The microstructure and phase constituents of Mg-7Zn-xCu-0.6Zr (x=0,1,2,3) alloys were characterized by means of TEM, SEM,EDS and EPMA. Results show that with the increasing of Cu content, the dendrite coherence temperature (Tcoh) and the solidification interval decreased, while the grain size was refined. With the addition of Cu a new low-melt eutectic phase formed, and the fluidity of Mg-7Zn-xCu-0.6Zr (x=0,1,2,3) were improved.

Key wordsmetallic materials    Mg-Zn-Cu-Zr alloys    solidification behaviors    fluidity    dendrite growth rate
收稿日期: 2018-01-16     
ZTFLH:  TG146.2  
基金资助:国家自然科学基金(51504153,51571145,51404137),辽宁省博士科研启动基金指导计划(20170520033),沈阳市国际合作项目(17-9-6-00),辽宁省自然科学基金(201602548)
作者简介:

作者简介 周 野,男,1992年生,博士生

Alloy Zn Cu Zr Mg
Mg-7Zn-0.6Zr 6.46 - 0.51 Bal.
Mg-7Zn-1Cu-0.6Zr 7.15 0.87 0.60 Bal.
Mg-7Zn-2Cu-0.6Zr 6.59 1.76 0.55 Bal.
Mg-7Zn-3Cu-0.6Zr 6.69 2.63 0.57 Bal.
表1  Mg-7Zn-xCu-0.6Zr(x=0,1,2,3)合金的化学成分
图1  流动性测试模具的示意图和实物图
图2  差热分析法实验系统装置
图3  Mg-7Zn-xCu-0.6Zr (x=0, 1, 2, 3)合金中心热电偶分析曲线
图4  Mg-7Zn-xCu-0.6Zr (x=0, 1, 2, 3)合金凝固区间△TS
Alloy TL/℃ TS/℃ TS/℃
Mg-7Zn -0.6Zr 640.3 423.5 216.8
Mg-7Zn-1Cu-0.6Zr 632.6 420.6 212.0
Mg-7Zn-2Cu-0.6Zr 631.9 421.8 210.1
Mg-7Zn-3Cu-0.6Zr 630.7 421.1 209.6
表2  Mg-7Zn-xCu-0.6Zr(x=0,1,2,3)合金液相线、固相线和凝固区间
图5  枝晶相干温度曲线
图6  Mg-7Zn-xCu-0.6Zr (x=0,1,2,3)合金的流动式样长度
图7  Mg-7Zn-xCu-0.6Zr (x=0,1,2,3)合金的SEM显微组织形貌
图8  Mg-7Zn-1Cu-0.6Zr合金晶界处共晶组织TEM形貌和MgZnCu、MgZn2相的电子衍射花样
Position Mg Zn Cu
%, mass fraction %, atomic fraction %, mass fraction %, atomic fraction %, mass fraction %, atomic fraction
Point 1 29.44 52.87 70.56 47.13 - -
Point 2 32.71 56.49 51.99 33.40 15.30 10.11
Point 3 40.06 64.01 38.13 22.66 24.81 13.34
Point 4 35.16 59.04 38.33 23.93 26.51 17.03
表3  Mg-7Zn-xCu-0.6Zr (x=0,1,2,3)合金的EDS分析结果
图9  Mg-7Zn-3Cu-0.6Zr合金的EPMA分析
图10  Mg-7Zn-xCu-0.6Zr (x=0,1,2,3)合金的晶粒尺寸和枝晶生长速率
图11  Mg-7Zn-xCu-0.6Zr (x=0,1,2,3)合金停止流动机理示意图
[1] Wang Z, Zhou Y, Zhou L, et al.Effect of Ca or Y addition on hot tearing behavior of Mg-1.5Zn alloys[J]. Chin. J. Mater. Res., 2017, 31: 561(王志, 周野, 周乐等. Ca和Y对Mg-1.5Zn合金热裂行为的影响[J]. 材料研究学报, 2017, 31: 561)
[2] Liu Y Y, Mao P L, Zhang F, et al.Effect of temperature on the anisotropy of AZ31 magnesium alloy rolling sheet under high strain rate deformation[J]. Philo. Mag., 2018, 98: 1086
[3] Pollock T M.Weight loss with magnesium alloys[J]. Science, 2010, 328: 986
[4] Zhou Y, Mao P L, Wang Z, et al.Investigations on hot tearing behavior of Mg-7Zn-xCu-0.6Zr alloys[J]. Acta Metall. Sin., 2017, 53: 851(周野, 毛萍莉, 王志等. Mg-7Zn-xCu-0.6Zr合金热裂行为的研究[J]. 金属学报, 2017, 53: 851)
[5] Fu Y, Wang H, Liu X T, et al.Effect of calcium addition on microstructure, casting fluidity and mechanical properties of Mg-Zn-Ce-Zr magnesium alloy[J]. J. Rare Earth, 2017, 35: 503
[6] Kwon Y D, Lee Z H. The effect of grain refining and oxide inclusion on the fluidity of Al-4.5Cu-0.6Mn and A356 alloys [J]. Mater. Sci. Eng., 2003, 360 A: 372
[7] Ravi K R, Pillai R M, Amaranathan K R, et al.Fluidity of aluminum alloys and composites: a review[J]. J. Alloys Compd., 2008, 456: 201
[8] Zhang Y Q, Motegi T.Effect of calcium on fluidity of AZ91D magnesium alloy[J]. Mater. Mech. Eng., 2008, 32(10): 63(张亚琴, 茂木彻一. 钙对AZ91D镁合金流动性的影响[J]. 机械工程材料, 2008, 32(10): 63)
[9] Wang Q D, Lu Y Z, Zeng X Q, et al.Study on the fluidity of AZ91+xRE magnesium alloy[J]. Mater. Sci. Eng., 1999, 271A: 109
[10] Fang X G, Lü S L, Zhao L, et al.Microstructure and mechanical properties of a novel Mg-RE-Zn-Y alloy fabricated by rheo-squeeze casting[J]. Mater. Des., 2016, 94: 353
[11] Zhang Z Q, Liu X, Wang Z K, et al.Effects of phase composition and content on the microstructures and mechanical properties of high strength Mg-Y-Zn-Zr alloys[J]. Mater. Des., 2015, 88: 915
[12] Yang W P, Guo X F, Lu Z X.TEM microstructure of rapidly solidified Mg-6Zn-1Y-1Ce alloy[J]. Trans. Nonferrous Met. Soc. China, 2012, 22: 786
[13] Yim C D, You B S, Jang R S, et al.Effects of melt temperature and mold preheating temperature on the fluidity of Ca containing AZ31 alloys[J]. J. Mater. Sci., 2006, 41: 2347
[14] Zhou L.Investigations on hot tearing susceptibility and mechanism of Mg-Zn-(Al) alloys [D]. Shenyang: Shenyang University of Technology, 2011(周乐. Mg-Zn-(Al)系合金热裂敏感性及其微观机理研究 [D]. 沈阳: 沈阳工业大学, 2011)
[15] Song P W.Research status and development trend of heat-resistant magnesium alloy[J]. J Shaanxi Univ. Technol.(Nat. Sci. Ed.), 2017, 33(4): 5(宋佩维. 耐热镁合金的研究现状与发展趋势[J]. 陕西理工学院学报(自然科学版), 2017, 33(4): 5)
[16] Zhu H M.A study of the aging behavior, microstructures and mechanical properties of cast Mg-6Zn-xCu-0.6Zr (x=0-2.0) alloys [D]. Guangzhou: South China University of Technology, 2011(朱红梅. Mg-6Zn-xCu-0.6Zr (x=0-2.0)铸造镁合金的时效行为、显微组织及力学性能研究 [D]. 广州: 华南理工大学, 2011)
[17] Wang F, Di J N, Mao P L, et al.A nonferrous alloy casting fluidity test metal mould [P]. Chin Pat, 103424338, 2013(王峰, 邸金南, 毛萍莉等. 一种有色合金铸造流动性测试金属型模具 [P]. 中国专利, 103424338, 2013)
[18] Zhang S B.Investigations on testing methods and hot tearing susceptibility of Mg-Zn-Y alloys [D]. Shenyang: Shenyang University of Technology, 2014(张斯博. Mg-Zn-Y合金热裂行为测试研究 [D]. 沈阳: 沈阳工业大学, 2014)
[19] Dahle A K, T?ndel P A, Paradies C J, et al.Effect of grain refinement on the fluidity of two commercial Al-Si foundry alloys[J]. Metall. Mater. Trans., 1996, 27A: 2305
[20] Malekan M, Shabestari S G.Effect of grain refinement on the dendrite coherency point during solidification of the A319 aluminum alloy[J]. Metall. Mater. Trans., 2009, 40A: 3196
[21] Farahany S, Ourdjini A, Idris M H, et al.Computer-aided cooling curve thermal analysis of near eutectic Al-Si-Cu-Fe alloy[J]. J. Therm. Anal. Calorim., 2013, 114: 705
[22] Chen C P, Zhu L M, Li Z.The Principle of Material Forming [M]. Beijing: China Machine Press, 2001(陈平昌, 朱六妹, 李赞. 材料成形原理 [M]. 北京: 机械工业出版社, 2001)
[23] StJohn D H, Qian M, Easton M A, et al. Grain refinement of magnesium alloys[J]. Metall. Mater. Trans., 2005, 36A: 1669
[24] Cho Y H, Kim H W, Lee J M, et al.A new approach to the design of a low Si-added Al-Si casting alloy for optimising thermal conductivity and fluidity[J]. J. Mater. Sci., 2015, 50: 7271
[25] Lee Y C, Dahle A K, StJohn D H. The role of solute in grain refinement of magnesium[J]. Metall. Mater. Trans., 2000, 31A: 2895
[26] Chai G, B?ckerud L, R?lland T, et al.Dendrite coherency during equiaxed solidification in binary aluminum alloys[J]. Metall. Mater. Trans., 1995, 26A: 965
[27] Song R D, Hao H, Gu H W, et al.Research on the effect of dendrite tip growth velocity on the microstructure simulation determination of the approximation of Ivantsov function[J]. Foundry Technol., 2011, 32: 34(宋迎德, 郝海, 谷松伟等. 枝晶尖端生长速度对凝固组织数值模拟的影响研究——Ivantsov函数近似方式的确定[J]. 铸造技术, 2011, 32: 34)
[28] Dahle A K, Arnberg L. The effect of grain refinement on the fluidity of aluminium alloys [J]. Mater. Sci. Forum, 1996, 217-222: 259
[29] Unsworth W.New magnesium alloy for automobile applications[J]. Light Metal Age, 1987, 8: 10
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] 刘天福, 张滨, 张均锋, 徐强, 宋竹满, 张广平. 缺口应力集中系数对TC4 ELI合金低周疲劳性能的影响[J]. 材料研究学报, 2023, 37(7): 511-522.