Please wait a minute...
材料研究学报  2018, Vol. 32 Issue (12): 889-897    DOI: 10.11901/1005.3093.2018.341
  研究论文 本期目录 | 过刊浏览 |
淬火工艺对UHS海工钢力学性能的影响
李振团, 柴锋(), 杨才福, 罗小兵, 杨丽, 苏航
钢铁研究总院 工程用钢研究所 北京 100081
Effect of Quenching on Mechanical Property of Ultra-high Strength Marine Engineering Steel
Zhentuan LI, Feng CHAI(), Caifu YANG, Xiaobing LUO, Li YANG, Hang SU
(Division of Structurale Steels, Central Iron and Steel Research Institute, Beijing 100081, China)
引用本文:

李振团, 柴锋, 杨才福, 罗小兵, 杨丽, 苏航. 淬火工艺对UHS海工钢力学性能的影响[J]. 材料研究学报, 2018, 32(12): 889-897.
Zhentuan LI, Feng CHAI, Caifu YANG, Xiaobing LUO, Li YANG, Hang SU. Effect of Quenching on Mechanical Property of Ultra-high Strength Marine Engineering Steel[J]. Chinese Journal of Materials Research, 2018, 32(12): 889-897.

全文: PDF(10308 KB)   HTML
摘要: 

采用低碳(C<0.05)NiCrMo设计并使用Thermo-Calc软件、光学显微镜、扫描以及透射电镜等手段,研究了淬火工艺对超高强海工用钢组织细化和力学性能的影响。结果表明,这种钢在910℃淬火和525℃时效发生二次硬化,其最高峰值硬度为369 HV,在700℃时效空冷后得到二次马氏体组织,其峰值硬度达到361 HV。在820~910℃淬火时,随着淬火温度的降低使用Thermo-Calc软件计算出的(Nb,Ti)C平均粒子半径明显减小,细小的(Nb,Ti)C粒子能有效抑制奥氏体晶粒的长大,提高基体中大小角度晶界密度,强韧性提高,其中820℃淬火强度最高达到1084 MPa,-80℃ V型冲击功为76 J,断口纤维率为100%。断口形貌和裂纹扩展结果表明,细化的组织和第二相能阻碍韧窝的扩展断裂,细化的板条束和板条块能显著改变裂纹扩展方向,裂纹扩展路径的最大单位长度为15 μm,因此具有较高的低温韧性。

关键词 金属材料低碳超高强度海工钢淬火温度组织细化裂纹扩展    
Abstract

Effect of quenching processes on the mechanical property and microstructure of a newly designed ultra-high strength marine engineering steel of low carbon (C<0.05) NiCrMo was investigated by means of thermo-Calc software, optical microscopy, scanning and transmission electron microscopy. Results show that secondary hardening occurred for the steel quenched from 910℃ and then aged at 525℃, resulting in a maximum peak hardness was 369 HV, while secondary martensite microstructures emerged for the steel quenched from 910℃ and then aged at 700℃ by air cooling, resulting in a peak hardness 361 HV. Thermo-Calc calculation result revealed that the mean particle radius of (Nb, Ti)C was obviously reduced with the decreasing quenching temperature within the range of 820~910℃, and the refined (Nb, Ti) C particles could effectively suppress the growth of austenite grains, thus improving grain boundary density of high or low angle in the matrix, which led to the increment of strength and toughness. Among others, the steel quenched from 820℃ presents the highest strength up to 1084 MPa, impact energy of 76 J for V-type impact test at -80℃, and the fracture fiber rate was up to 100%. Fractograph- and crack propagation-observation showed that the refinement of microstructure and second phase could hinder the expansion and fracture of dimples, while the refined martensite packet and block could significantly alter the crack propagation direction. Finally, the steel quenched from 820℃ presents the maximum unit length of 15 μm for the crack propagation path, implying a high toughness of the steel.

Key wordsmetallic materials    low carbon ultra-high strength marine engineering steel    quenching temperature    microstructure refinement    crack propagation
收稿日期: 2018-05-20     
基金资助:国家重点基础研究发展计划(2017YFB0703002)
作者简介:

作者简介 李振团,男,1987年生,博士

Component C Si Mn P S Ni Cr+Mo +V Nb+Ti
Content <0.05 0.08 0.52 ≤0.002 0.004 9.2 <1.5 0.05
表1  实验用钢的化学成分
图1  合金的硬度与时效温度的关系
图2  时效温度不同的合金的组织形貌
图3  淬火温度对试验钢的强度和-80℃ Akv的影响
图4  在不同温度淬火的合金的晶粒、组织形貌及晶粒尺寸分布频率图
图5  时效温度对试样组织形貌的影响
图6  在平衡状态下试样中各相的含量
图7  在820℃淬火的(Nb,Ti)C 的TEM形貌和能谱
图8  淬火温度和时间对(Nb,Ti)C平均粒子半径的影响
图9  在不同温度淬火的试样的EBSD晶界分布
图10  淬火温度不同的试样的晶界密度分布图
图11  在不同温度淬火和回火试样的冲击断口形貌和能谱分析
图12  在不同温度淬火的试样裂纹扩展的SEM像和EBSD分析结果
[1] Lei X W, Huang J H, Chen S H, et al.Current status and trend of ultra-high strength hull structural steels[J]. Mater. Sci. Technol., 2015, 23(4): 7(雷玄威, 黄继华, 陈树海等. 超高强度船体结构钢的开发现状与趋势[J]. 材料科学与工艺, 2015, 23(4): 7)
[2] Gao Z Y, Pan T, Wang Z, et al.Composition optimization design of boron-microalloying ultra-heavy plate steel with high hardenability[J]. Chin. J. Eng., 2015, 37: 447(高志玉, 潘涛, 王卓等. 高淬透性硼微合金化特厚板钢成分优化设计[J]. 工程科学学报, 2015, 37: 447)
[3] Wang C J, Liang J X, Liu Z B, et al.Effect of metastable austenite on mechanical property and Mechanism in cryogenic steel applied in oceaneering[J]. Acta Metall. Sin., 2016, 52: 385(王长军, 梁剑雄, 刘振宝等. 亚稳奥氏体对低温海工用钢力学性能的影响与机理[J]. 金属学报, 2016, 52: 385)
[4] Iorio L E, Garrison W M Jr. The effects of titanium additions on AF1410 ultra-high-strength steel[J]. Metall. Mater. Trans., 2006, 37A: 1165
[5] Manigandan K, Srivatsan T S, Tammana D, et al.Influence of microstructure on strain-controlled fatigue and fracture behavior of ultra high strength alloy steel AerMet 100[J]. Mater. Sci. Eng., 2014, 601A: 29
[6] Mujahid M, Lis A K, Garcia C I, et al. HSLA-100 steels: Mcrostructure and properties [J]. Key Eng. Mater., 1993, 84-85: 209
[7] Hou J P, Pan T, Zhu Y G, et al.Effect of inter-critical quenching process on mechanical property and microstructure of 9Ni cryogenic steel[J]. Trans. Mater. Heat Treat., 2014, 35(10): 88(侯家平, 潘涛, 朱莹光等. 临界淬火工艺对9Ni低温钢力学性能及精细组织的影响[J]. 材料热处理学报, 2014, 35(10): 88)
[8] Song P C, Liu W B, Liu L, et al.Austenite growth behavior of Fe-13Cr-5Ni martensitic stainless steel under continuous heating[J]. Chin. J. Eng., 2017, 39: 68(宋鹏程, 柳文波, 刘璐等. Fe-13Cr-5Ni马氏体不锈钢在连续加热过程中两相区的奥氏体生长行为[J]. 工程科学学报, 2017, 39: 68)
[9] Yong Q L.Secondary Phase in Steels [M]. Beijing: Metallurgical Industry Press, 2006(雍岐龙. 钢铁材料中的第二相 [M]. 北京: 冶金工业出版社, 2006)
[10] Dere E G, Sharma H, Petrov R H, et al.Effect of niobium and grain boundary density on the fire resistance of Fe-C-Mn steel[J]. Scr. Mater., 2013, 68: 651
[11] Morito S, Tanaka H, Konishi R, et al.The morphology and crystallography of lath martensite in Fe-C alloys[J]. Acta Mater., 2003, 51: 1789
[12] Wang C F, Wang M Q, Shi J, et al.Effect of microstructural refinement on the toughness of low carbon martensitic steel[J]. Scr. Mater., 2008, 58: 492
[13] Tong M W, Venkatsurya P K C, Zhou W H, et al. Structure-mechanical property relationship in a high strength microalloyed steel with low yield ratio: The effect of tempering temperature[J]. Mater. Sci. Eng., 2014, 609A: 209
[14] Shen J C, Luo Z J, Yang C F, et al.“Effective grain size” affecting low temperature toughness in lath structure of HSLA steel[J]. J. Iron Steel Res., 2014, 26(7): 70(沈俊昶, 罗志俊, 杨才福等. 低合金钢板条组织中影响低温韧性的“有效晶粒尺寸”[J]. 钢铁研究学报, 2014, 26(7): 70)
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] 刘天福, 张滨, 张均锋, 徐强, 宋竹满, 张广平. 缺口应力集中系数对TC4 ELI合金低周疲劳性能的影响[J]. 材料研究学报, 2023, 37(7): 511-522.