Please wait a minute...
材料研究学报  2018, Vol. 32 Issue (12): 945-950    DOI: 10.11901/1005.3093.2018.302
  研究论文 本期目录 | 过刊浏览 |
ZnO纳米锥丛林阵列的低温制备和光催化性能
方向明1,2, 曾值2, 高世勇2(), 李文强2, 王金忠2
1 太原学院物理系 太原 030032
2 哈尔滨工业大学材料科学与工程学院 哈尔滨 150001
Low-temperature Preparation and Photocatalytic Activity of Eco-friendly Nanocone Forest-like Arrays of ZnO
Xiangming FANG1,2, Zhi ZENG2, Shiyong GAO2(), Wenqiang LI2, Jinzhong WANG2
1 Department of Physics, Taiyuan University, Taiyuan 030032, China
2 School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
引用本文:

方向明, 曾值, 高世勇, 李文强, 王金忠. ZnO纳米锥丛林阵列的低温制备和光催化性能[J]. 材料研究学报, 2018, 32(12): 945-950.
Xiangming FANG, Zhi ZENG, Shiyong GAO, Wenqiang LI, Jinzhong WANG. Low-temperature Preparation and Photocatalytic Activity of Eco-friendly Nanocone Forest-like Arrays of ZnO[J]. Chinese Journal of Materials Research, 2018, 32(12): 945-950.

全文: PDF(4081 KB)   HTML
摘要: 

用低温水热法(60℃)在纯水中在锌片上制备了ZnO纳米锥丛林阵列,并使用扫描电子显微镜、X射线衍射仪和能谱仪等手段对其形貌、结构和化学成分进行了表征。结果表明,锌片表面被成簇的ZnO纳米锥和独立生长的ZnO纳米锥完全覆盖,ZnO纳米结构的纯度较高晶体质量也较好。ZnO纳米锥丛林阵列对甲基橙和亚甲基蓝都具有良好的催化性能,证明ZnO纳米锥丛林阵列对染料具有普遍催化作用。还分析了ZnO纳米锥丛林阵列的生长机制和光催化机理。

关键词 无机非金属材料ZnO纳米锥水热法光催化    
Abstract

Nanocone arrays of ZnO were synthesized on Zn foil via a simple low temperature (60OC) hydrothermal route. The morphology, structure and composition of the prepared nanocone arrays were characterized by means of scanning electron microscopy, X-ray diffractometer and energy disperse spectroscopy. Results show that the surface of Zn-substrate was fully covered by clustered ZnO-nanocones and standalone ZnO-nanocones, the nanocone arrays of ZnO are of high purity and high degree of crystallinity. The prepared nanocone arrays of ZnO exhibit good photocatalytic performance for aqueous solutions of methyl orange and methylene blue, indicating that the nanocone arrays of ZnO may be a general purpose photocatalyst for the degradation of different dyes. Furthermore, the possible growth and photocatalytic mechanisms of the nanocone arrays of ZnO were also analyzed.

Key wordsinorganic non-metallic materials    ZnO nanocone    hydrothermal    photocatalytic activity
收稿日期: 2018-04-27     
基金资助:黑龙江省博士后启动基金(LBH-Q16104)
作者简介:

作者简介 方向明,男,1982年生,讲师

图1  在金属Zn衬底上生长的ZnO纳米锥结构的SEM照片、高倍SEM照片、纳米锥阵列稀疏的底层部分放大照片和ZnO纳米锥阵列的EDS图
图2  ZnO纳米锥丛林阵列和Zn片的XRD图谱
图3  反应时间分别为1 h,3 h,6 h 和9 h的ZnO纳米锥结构的SEM照片
图4  在Zn衬底上ZnO纳米锥丛林阵列的生长机理图
图5  ZnO纳米锥丛林阵列结构对MO溶液和 MB溶液的光催化降解图
图6  光在ZnO纳米锥结构间反射示意图和ZnO纳米锥结构光催化机理图
[1] Tang Y, Zhao Y, Zhang Z G, et al.Hydrothermal Synthesis and Properties of ZnO Nanorod Arrays[J]. Chin. J. Mater. Res., 2015, 29(7): 529(汤洋, 赵颖, 张增光等. 氧化锌纳米柱阵列的水热合成及性能[J]. 材料研究学报,2015, 29(7): 529)
[2] Chen Y L, Wang L J, Wang W Z, et al.Enhanced photoelectrochemical properties of ZnO/ZnSe/CdSe/Cu2-xSe core-shell nanowire arrays fabricated by ion-replacement method[J]. Appl. Catal. B., 2017, 209: 110
[3] Cao M S, Song W L, Zhou W, et al.Dynamic compressive response and failure behavior of fiber polymer composites embedded with tetra-needle-like ZnO nanowhiskers[J]. Compos. Struct., 2010, 92(12): 2984
[4] Cao M S, Shi X L, Fang X Y, et al.Microwave absorption properties and mechanism of cagelike ZnO/SiO2, nanocomposites[J]. Appl. Phys. Lett., 2007, 91(20): 203110
[5] Cao M S, Zhou W, Shi X L, et al.Dynamic response and reinforcement mechanism of composites embedded with tetraneedlelike ZnO nanowhiskers[J]. Appl. Phys. Lett., 2007, 91(2): 021912
[6] Lin H B, Cao M S, Zhao Q L, et al.Mechanical reinforcement and piezoelectric properties of nanocomposites embedded with ZnO nanowhiskers[J]. Scr. Mater., 2008, 59(7): 780
[7] Srivastava A, Kumar N.Effect of substrate temperature on (00l) oriented growth of ZnO nanostructures on fused quartz substrate by PLD[J]. J. Mater. Sci: Mater. Electron., 2017, 28(13): 9258
[8] Kennedy O W, Coke M L, White E R, et al.MBE growth and morphology control of ZnO nanobelts with polar axis perpendicular to growth direction[J]. Mater. Lett., 2018, 212: 51
[9] Mahdhi h, Djessas k, Ben Ayadi Z. Synthesis and characteristics of Ca-doped ZnO thin films by rf magnetron sputtering at low temperature[J]. Mater. Lett., 2018, 214: 10
[10] Lee W J, Lee G H.Morphological variation and luminescence properties of ZnO micro/nanocrystals synthesized by thermal evaporation method[J]. Korean J. Mater. Res., 2017, 27(10): 530
[11] Son H S, Choi N J, Kim K B, et al.Al-doped ZnO seed layer-dependent crystallographic control of ZnO nanorods by using electrochemical deposition[J]. Mater. Res. Bull., 2016, 82: 50
[12] Qu X, Yang R, Zhao Y, et al.A controllable hydrothermal fabrication of hierarchical ZnO microstructures and its gas sensing properties[J]. J. Mater. Sci: Mater. Electron., 2018, 29(6): 5143
[13] Zhao X H, Li M, Lou X D.Sol-gel assisted hydrothermal synthesis of ZnO microstructures: Morphology control and photocatalytic activity[J]. Adv. Powder Technol., 2014, 25(1): 372
[14] Wang S, Kuang P Y, Cheng B, et al.ZnO hierarchical microsphere for enhanced photocatalytic activity[J]. J. Alloys Compd., 2018, 741: 622
[15] Wang Y X, Yang Y Q, Xi L M, et al.A simple hydrothermal synthesis of flower-like ZnO microspheres and their improved photocatalytic activity[J]. Mater. Lett., 2016, 180: 55
[16] Quintana A, Gómez A, Baró M D, et al.Self-templating faceted and spongy single-crystal ZnO nanorods: Resistive switching and enhanced piezorespons[J]. Mater. Des., 2017, 133: 54
[17] Turgut G, Duman S, ?z?elik F S, et al.An investigation of Zn/ZnO:Al/p-Si/Al heterojunction diode by sol-gel spin coating technique[J]. J. Sol-Gel Sci. Technol., 2014, 71(3): 589
[18] Zhao Y N, Cao M S, Jin H B, et al.Catalyst-free synthesis, growth mechanism and optical properties of multipod ZnO with nanonail-like legs[J]. Scr. Mater., 2006, 54(12): 2057
[19] Tan W K, Razak K A, Lockman Z, et al.Formation of highly crystallized ZnO nanostructures by hot-water treatment of etched Zn foils[J]. Mater. Lett., 2013, 91: 111
[20] Tan W K, Razak K A, Lockman Z, et al.Optical properties of two-dimensional ZnO nanosheets formed by hot-water treatment of Zn foils[J]. Solid State Commun., 2013, 162: 43
[21] Maya-Trevi?o M L, Guzmán-Mar J L, Hinojosa-Reyes L, et al. Synthesis and photocatalytic activity of ZnO-CuPc for methylene blue and potassium cyanide degradation[J]. Mater. Sci. Semicond. Process., 2018, 77: 74
[22] Chen Y, Zhang P, Shang Y H, et al.Controllable synthesis and photocatalytic activity of ZnO nano-cones with different aspect ratio[J]. Chin. J. Mater. Res., 2017, 31(8): 619(陈燕, 张萍, 尚永辉等. 不同纵横比ZnO纳米锥的可控合成及其光催化性能[J]. 材料研究学报, 2017, 31(8): 619)
[23] Chen Y C, Cheng J N, Cheng J, et al.L-Arginine assisted preparation of Ag/ZnO nanocomposites with enhanced photocatalytic performance[J]. J. Mater. Sci: Mater. Electron., 2015, 26(5): 2775
[24] Wang R, Kong X Y, Zhang W T, et al.Mechanism insight into rapid photocatalytic disinfection of Salmonella based on vanadate QDs-interspersed g-C3N4 heterostructures[J]. Appl. Catal. B, 2018, 225: 228
[25] Meena S, Vaya D, Das B K.Photocatalytic degradation of Malachite Green dye by modified ZnO nanomaterial[J]. Bull. Mater. Sci., 2016, 39(7): 1735
[26] Dong B, Yu X X, Dong Z F, et al.Facile synthesis of ZnO nanoparticles for the photocatalytic degradation of methylene blue[J]. J. Sol-Gel Sci. Technol., 2017, 82(1): 167
[27] Chen Y L, Wang L J, Wang W Z, et al.Synthesis of Se-doped ZnO nanoplates with enhanced photoelectrochemical and photocatalytic properties[J]. Mater. Chem. Phys., 2017, 199: 416
[1] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[4] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[5] 李延伟, 罗康, 姚金环. Ni(OH)2 负极材料的十二烷基硫酸钠辅助制备及其储锂性能[J]. 材料研究学报, 2023, 37(6): 453-462.
[6] 余谟鑫, 张书海, 朱博文, 张晨, 王晓婷, 鲍佳敏, 邬翔. N掺杂生物炭的制备及其对Co2+ 的吸附性能[J]. 材料研究学报, 2023, 37(4): 291-300.
[7] 朱明星, 戴中华. SrSc0.5Nb0.5O3 改性BNT基无铅陶瓷的储能特性研究[J]. 材料研究学报, 2023, 37(3): 228-234.
[8] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[9] 周毅, 涂强, 米忠华. 制备方法对磷酸盐微晶玻璃结构和性能的影响[J]. 材料研究学报, 2023, 37(10): 739-746.
[10] 谢锋, 郭建峰, 王海涛, 常娜. ZnO/CdS/Ag复合光催化剂的制备及其催化和抗菌性能[J]. 材料研究学报, 2023, 37(1): 10-20.
[11] 余超, 邢广超, 吴郑敏, 董博, 丁军, 邸敬慧, 祝洪喜, 邓承继. 亚微米Al2O3 对重结晶碳化硅的作用机制[J]. 材料研究学报, 2022, 36(9): 679-686.
[12] 方向明, 任帅, 容萍, 刘烁, 高世勇. 自供能Ag/SnSe纳米管红外探测器的制备和性能研究[J]. 材料研究学报, 2022, 36(8): 591-596.
[13] 李福禄, 韩春淼, 高嘉望, 蒋健, 许卉, 李冰. 氧化石墨烯的变温发光[J]. 材料研究学报, 2022, 36(8): 597-601.
[14] 朱晓东, 夏杨雯, 喻强, 杨代雄, 何莉莉, 冯威. Cu掺杂金红石型TiO2 的制备及其光催化性能[J]. 材料研究学报, 2022, 36(8): 635-640.
[15] 熊庭辉, 蔡文汉, 苗雨, 陈晨龙. ZnO纳米棒阵列和薄膜的同步外延生长及其光电化学性能[J]. 材料研究学报, 2022, 36(7): 481-488.