Please wait a minute...
材料研究学报  2019, Vol. 33 Issue (3): 170-176    DOI: 10.11901/1005.3093.2018.282
  本期目录 | 过刊浏览 |
LiCoO2/LiNi0.8Co0.15Al0.05O2混合正极的颗粒级配与电化学性能
薛江陪1,姜春海1(),邹智敏1,潘炳炫2
1. 福建省功能材料及应用重点实验室 厦门理工学院材料科学与工程学院 厦门 361024
2. 厦门三圈电池有限公司 厦门 361023
Electrochemical Properties of LiCoO2/LiNi0.8Co0.15Al0.05O2 Blended Cathode Materials with Varied Grain-gradations
Jiangpei XUE1,Chunhai JIANG1(),Zhimin ZOU1,Bingxuan PAN2
1. Fujian Provincial Key Laboratory of Functional Materials and Applications, School of Materials Science and Engineering, Xiamen University of Technology, Xiamen 361024, China
2. Xiamen 3-cycles Battery Co. Ltd, Xiamen 361023, China
引用本文:

薛江陪,姜春海,邹智敏,潘炳炫. LiCoO2/LiNi0.8Co0.15Al0.05O2混合正极的颗粒级配与电化学性能[J]. 材料研究学报, 2019, 33(3): 170-176.
Jiangpei XUE, Chunhai JIANG, Zhimin ZOU, Bingxuan PAN. Electrochemical Properties of LiCoO2/LiNi0.8Co0.15Al0.05O2 Blended Cathode Materials with Varied Grain-gradations[J]. Chinese Journal of Materials Research, 2019, 33(3): 170-176.

全文: PDF(8440 KB)   HTML
摘要: 

通过机械球磨制备不同质量比的LCO/NCA混合正极材料,采用X射线衍射仪(XRD)和扫描电子显微镜(SEM)表征其相结构和微观形貌,研究了这种材料的电化学性能。结果表明,两种正极材料球磨混合后其晶体结构均未改变,但是初始的NCA球形二次颗粒被打散,形成的纳米粒子弥散填充在LCO微米颗粒的孔隙之间,提高了正极材料的涂膜密度和二者之间的接触紧密性。当LCO:NCA=6:4时混合正极材料具有最佳的颗粒级配效果,其首次充放电效率最高,为92.4%;在10 C (1 C=140 mA·g-1)倍率下的比容量(136 mA·h·g-1)是0.2 C时的78.0%,出现了明显的协同增强效果;在1 C倍率下循环100次其容量保持率为89.8%,表现出优异的电化学性能。

关键词 无机非金属材料混合正极材料电化学性能锂离子电池倍率性能循环稳定性    
Abstract

Blended cathode materials LiCoO2/LiNi0.8Co0.15Al0.05O2(LCO/NCA) with different mass ratios of LiCoO2 to LiNi0.8Co0.15Al0.05O2 were prepared by ball milling method. The phase structure and morphology of the blended cathode materials were characterized by X-ray diffraction (XRD) and scanning electron microscope (SEM). The electrochemical properties of the prepared cathodes were examined in half cells. It follows that after the ball milling, the crystal structure of the blended cathode materials did not change, however, the initial secondary NCA microspheres were broken into nano-sized fragments, which were then uniformly filled into the gaps between LCO microspheres, resulting in enhancement of the contact between the two cathode materials, and therewith, the density of the film prepared on cathode. For LCO:NCA = 6:4, the blended cathode material displayed the best grain-gradation effect and good electrochemical performances: namely the initial columbic efficiency of 92.4%, the capacity retention of 78% at 10 C (1 C=140 mA·g-1) referencing to that at 0.2 C, and capacity retention of 89.8% after 100 cycles at 1 C. A synergistic effect on the rate performance between the two cathode materials was obviously demonstrated.

Key wordsinorganic non-metallic materials    blended cathode material    electrochemical perfor-mance    Li-ion batteries    rate capability    cycle stability
收稿日期: 2018-04-20     
ZTFLH:  TB321  
基金资助:福建省自然科学基金(2016H0038);福建省自然科学基金(2016J01746);厦门市科技计划指导性项目(3502Z20179022);厦门理工学院研究生创新课题(40316099)
作者简介: 薛江陪,女,1993年生,硕士生
图1  NCA、LCO 和 LCO/NCA混合正极材料的XRD谱
图2  NCA和LCO正极材料粉末及相对应的NCA和LCO极片的SEM照片
图3  LCO/NCA 混合比例为70:30, 60:40, 50:50和40:60的混合正极片的SEM照片
图4  NCA、LCO和 LCO/NCA混合正极的循环伏安曲线(扫描速率: 0.1 mV·s-1)
图5  NCA、LCO和 LCO/NCA混合正极材料在0.2 C时的首循环充放电曲线
图6  NCA、LCO和 LCO/NCA混合正极的倍率性能
图7  NCA、LCO和 LCO/NCA混合正极材料在1C下的循环性能
图8  NCA、LCO和LCO/NCA混合正极材料的电化学阻抗图谱
[1] HuM, PangX L, ZhouZ. Recent progress in high-voltage lithium ion batteries [J]. J. Power. Sources, 2013, 237: 229
[2] BhattM D, O'DwyerC. Recent progress in theoretical and computational investigations of Li-ion battery materials and electrolytes [J]. Phys. Chem. Chem. Phys., 2015, 17(7): 4799
[3] NittaN, WuF, LeeJ T, et al. Li-ion battery materials: present and future [J]. Mater. Today, 2015, 18(5): 252
[4] RuanZ W, GuH T, ShiH H, et al. Research progress of LiNi(1-x-y)CoxAlyO2 as cathode materials for Lithium ion battery [J]. J. Funct. Mater., 2015, 01: 1007
[4] (阮泽文, 顾海涛, 史海浩等. 动力锂离子电池三元正极材料LiNi(1-x-y)CoxAlyO2研究进展 [J]. 功能材料, 2015, 01: 1007)
[5] HouP Y, ZhangH Z, DengX L, et al. Stabilizing the electrode/electrolyte interface of LiNi0.8 Co0.15Al0.05O2 through tailoring aluminum distribution in microspheres as long-life, high-rate, and safe cathode for lithium-ion batteries [J]. ACS Appl. Mater. Inter., 2017, 9(35): 29643
[6] QiuZ P, ZhangY J, DongP, et al. Degradation analysis of LiNi0.8Co0.15Al0.05O2 positive-electrode active material and its modification methods [J]. Mater. Rev., 2017, 31(1): 18
[6] (邱振平, 张英杰, 董 鹏等. LiNi0.8Co0.15 Al0.05O2正极活性材料的衰减机理及改性措施 [J]. 材料导报, 2017, 31(1): 18)
[7] YangW Z, WangH, ZhengC M. Detailed study on LiMn2O4/Li-Ni0.8Co0.15Al0.05O2 blend cathode material for lithium-ion battery [J]. GuangZhou. Chem. Ind. Technol., 2016, 44(15): 51
[7] (杨文柱, 王 珲, 郑春满. LiMn2O4/LiNi0.8Co0.15Al0.05O2混合正极材料性能研究 [J]. 广州化工, 2016, 44(15): 51)
[8] ChikkannanavarS B, BernardiD M, LiuL. A review of blended cathode materials for use in Li-ion batteries [J]. J. Power. Sources, 2014, 248: 91
[9] MarthaS K, HaikO, ZinigradE. On the thermal stability of olivine cathode materials for lithium-ion batteries [J]. J. Electrochem. Soc., 2011, 158(10): A1115
[10] DuY C, HuangX P, ZhangK Y, et al. Thermal stability of LiFePO4/C-LiMn2O4 blended cathode materials [J]. Sci. China Technol. Sci., 2017, 60(1): 58
[11] TanX X, TangY G, WangW D, et al. Synthesis and electrochemical characteristics of layered LiNi0.7Co0.15Mn0.15O2 cathode materials for Li-ion batteries [J]. Chin. J. Mater. Res., 2010, 24(2): 159
[11] (谭欣欣, 唐有根, 王伟东等. 锂离子电池正极材料球形LiNi0.7Co0.15Mn0.15O2的制备和性能 [J]. 材料研究学报, 2010, 24(2): 159)
[12] XuC Q, TianY W, LiuL Y, et al. Influence of Al3+ doping on structure and electrochemical properties of Li1.02Mn2O4 [J]. Chin. J. Mater. Res., 2006, 20(5): 544
[12] (徐茶清, 田彦文, 刘丽英等. Al3+掺杂对Li1.02Mn2O4结构和电化学性能的影响 [J]. 材料研究学报, 2006, 20(5): 544)
[13] LinC H, ShenC H, PrinceA A M, et al. Electrochemical studies on mixtures of LiNi0.8Co0.17Al0.03O2 and LiCoO2 cathode materials for lithium ion batteries [J]. Solid State Commun., 2005, 133(10): 687
[14] WangL Z, YanJ, ZhangA Q, et al. Research on the overcharge characteristic of LiCoO2/LiNi0.8Co0.15Al0.05O2 mixture [J]. Chinese. Battery. Ind., 2009, 14(3): 147
[14] (王力臻, 闫 继, 张爱勤等. LiCoO2/LiNi0.8Co0.15Al0.05O2混合正极材料过充电行为研究 [J]. 电池工业, 2009, 14(3): 147)
[15] ZhuL, JiaD, YuC, et al. Electrochemical thermal stability of the LiFePO4/LiNi0.8Co0.15Al0.05O2 blend cathode material for lithium ion batteries [J]. Energy Storage Sci. Techno., 2016, 5(4): 478
[15] (朱 蕾, 贾 荻, 俞 超等. 锂离子电池LiFePO4/LiNi0.8Co0.15-Al0.05O2混合正极材料的电化学热稳定性能 [J]. 储能科学与技术, 2016, 5(4): 478)
[16] ZhangW M, YangY H, SunS X, et al. Progresses in preparation study of positive electrode material—lithium cobaltate used for lithium ion battery [J]. Chinese. J. Inorg. Chem., 2000, 16(6): 873
[16] (张卫民, 杨永会, 孙思修等. 二次锂离子电池正极活性材料—LiCoO2制备研究进展 [J]. 无机化学学报, 2000, 16(6): 873)
[17] HeL B. Cathode composite materials and their applications in lithium-ion batteries [D]. Zhejiang: Zhejiang University, 2017
[17] (何林兵. 复合正极材料及其在锂离子电池中的应用 [D]. 浙江: 浙江大学, 2017)
[18] LiC D, YaoZ L, LiJ, et al. Preparation and Electrochemical Performance of LaF3-coated [Li0.2Mn0.54Ni0.13Co0.13]O2 as Cathode Material for Lithium-ion Batteries [J]. Chin. J. Mater. Res., 2017, 31(5): 394
[18] (李成冬, 姚志垒, 李 举等. LaF3表面修饰Li[Li0.2Mn0.54Ni0.13-Co0.13]O2的制备及其电化学性能 [J]. 材料研究学报, 2017, 31(5): 394)
[1] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[4] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[5] 李延伟, 罗康, 姚金环. Ni(OH)2 负极材料的十二烷基硫酸钠辅助制备及其储锂性能[J]. 材料研究学报, 2023, 37(6): 453-462.
[6] 余谟鑫, 张书海, 朱博文, 张晨, 王晓婷, 鲍佳敏, 邬翔. N掺杂生物炭的制备及其对Co2+ 的吸附性能[J]. 材料研究学报, 2023, 37(4): 291-300.
[7] 朱明星, 戴中华. SrSc0.5Nb0.5O3 改性BNT基无铅陶瓷的储能特性研究[J]. 材料研究学报, 2023, 37(3): 228-234.
[8] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[9] 周毅, 涂强, 米忠华. 制备方法对磷酸盐微晶玻璃结构和性能的影响[J]. 材料研究学报, 2023, 37(10): 739-746.
[10] 谢锋, 郭建峰, 王海涛, 常娜. ZnO/CdS/Ag复合光催化剂的制备及其催化和抗菌性能[J]. 材料研究学报, 2023, 37(1): 10-20.
[11] 刘东璇, 陈平, 曹新荣, 周雪, 刘莹. 碗状C@FeS2@NC复合材料的制备及其电化学性能[J]. 材料研究学报, 2023, 37(1): 1-9.
[12] 余超, 邢广超, 吴郑敏, 董博, 丁军, 邸敬慧, 祝洪喜, 邓承继. 亚微米Al2O3 对重结晶碳化硅的作用机制[J]. 材料研究学报, 2022, 36(9): 679-686.
[13] 方向明, 任帅, 容萍, 刘烁, 高世勇. 自供能Ag/SnSe纳米管红外探测器的制备和性能研究[J]. 材料研究学报, 2022, 36(8): 591-596.
[14] 李福禄, 韩春淼, 高嘉望, 蒋健, 许卉, 李冰. 氧化石墨烯的变温发光[J]. 材料研究学报, 2022, 36(8): 597-601.
[15] 朱晓东, 夏杨雯, 喻强, 杨代雄, 何莉莉, 冯威. Cu掺杂金红石型TiO2 的制备及其光催化性能[J]. 材料研究学报, 2022, 36(8): 635-640.